On Orbifold Criteria for Symplectic Toric Quotients
We introduce the notion of regular symplectomorphism and graded regular symplectomorphism between singular phase spaces. Our main concern is to exhibit examples of unitary torus representations whose symplectic quotients cannot be graded regularly symplectomorphic to the quotient of a symplectic rep...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2013 |
| Hauptverfasser: | Farsi, C., Seaton, C., Herbig, H.-C |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2013
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/149236 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On Orbifold Criteria for Symplectic Toric Quotients / C. Farsi, H-C. Herbig, C. Seaton // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 31 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
A Note on Disk Counting in Toric Orbifolds
von: Chan, Kwokwai, et al.
Veröffentlicht: (2020) -
Non-Compact Symplectic Toric Manifolds
von: Karshon, Y., et al.
Veröffentlicht: (2015) -
Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S²×S³
von: Boyer, C.P.
Veröffentlicht: (2011) -
Noncommutativity and Duality through the Symplectic Embedding Formalism
von: Everton M.C. Abreu, et al.
Veröffentlicht: (2010) -
Classical and Quantum Dynamics on Orbifolds
von: Kordyukov, Y.A.
Veröffentlicht: (2011)