On Addition Formulae for Sigma Functions of Telescopic Curves
A telescopic curve is a certain algebraic curve defined by m−1 equations in the affine space of dimension m, which can be a hyperelliptic curve and an (n,s) curve as a special case. We extend the addition formulae for sigma functions of (n,s) curves to those of telescopic curves. The expression of t...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2013 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2013
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/149237 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On Addition Formulae for Sigma Functions of Telescopic Curves / T. Ayano, A. Nakayashiki // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 24 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-149237 |
|---|---|
| record_format |
dspace |
| spelling |
Ayano, T. Nakayashiki, A. 2019-02-19T19:07:19Z 2019-02-19T19:07:19Z 2013 On Addition Formulae for Sigma Functions of Telescopic Curves / T. Ayano, A. Nakayashiki // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 24 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14H70; 37K20; 14H55; 14K25 DOI: http://dx.doi.org/10.3842/SIGMA.2013.046 https://nasplib.isofts.kiev.ua/handle/123456789/149237 A telescopic curve is a certain algebraic curve defined by m−1 equations in the affine space of dimension m, which can be a hyperelliptic curve and an (n,s) curve as a special case. We extend the addition formulae for sigma functions of (n,s) curves to those of telescopic curves. The expression of the prime form in terms of the derivative of the sigma function is also given. The authors would like to thank the referees for the useful comments. This research was partially supported by Grant-in-Aid for JSPS Fellows (22-2421) and for Scientific Research (C) 23540245 from Japan Society for the Promotion of Science. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications On Addition Formulae for Sigma Functions of Telescopic Curves Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On Addition Formulae for Sigma Functions of Telescopic Curves |
| spellingShingle |
On Addition Formulae for Sigma Functions of Telescopic Curves Ayano, T. Nakayashiki, A. |
| title_short |
On Addition Formulae for Sigma Functions of Telescopic Curves |
| title_full |
On Addition Formulae for Sigma Functions of Telescopic Curves |
| title_fullStr |
On Addition Formulae for Sigma Functions of Telescopic Curves |
| title_full_unstemmed |
On Addition Formulae for Sigma Functions of Telescopic Curves |
| title_sort |
on addition formulae for sigma functions of telescopic curves |
| author |
Ayano, T. Nakayashiki, A. |
| author_facet |
Ayano, T. Nakayashiki, A. |
| publishDate |
2013 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
A telescopic curve is a certain algebraic curve defined by m−1 equations in the affine space of dimension m, which can be a hyperelliptic curve and an (n,s) curve as a special case. We extend the addition formulae for sigma functions of (n,s) curves to those of telescopic curves. The expression of the prime form in terms of the derivative of the sigma function is also given.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/149237 |
| citation_txt |
On Addition Formulae for Sigma Functions of Telescopic Curves / T. Ayano, A. Nakayashiki // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 24 назв. — англ. |
| work_keys_str_mv |
AT ayanot onadditionformulaeforsigmafunctionsoftelescopiccurves AT nakayashikia onadditionformulaeforsigmafunctionsoftelescopiccurves |
| first_indexed |
2025-12-07T19:54:34Z |
| last_indexed |
2025-12-07T19:54:34Z |
| _version_ |
1850880582763937792 |