On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems
The particular case of the integrable two component (2+1)-dimensional hydrodynamical type systems, which generalises the so-called Hamiltonian subcase, is considered. The associated system in involution is integrated in a parametric form. A dispersionless Lax formulation is found.
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2009 |
| Hauptverfasser: | Pavlov, M.V., Popowicz, Z. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2009
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/149242 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems / M.V. Pavlov, Z. Popowicz // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
The Integrability of New Two-Component KdV Equation
von: Popowicz, Z.
Veröffentlicht: (2010) -
A generalized hydrodynamical Gurevich-Zybin equation of Riemann type and its Lax type integrability
von: Pavlov, M.V., et al.
Veröffentlicht: (2010) -
On a nonlocal Ostrovsky–Whitham type dynamical system, its Riemann type inhomogeneous regularizations and their integrability
von: Golenia, J., et al.
Veröffentlicht: (2010) -
New vortex structures in the two-dimensional hydrodynamic
von: Tur, A.V., et al.
Veröffentlicht: (2010) -
Integrability Analysis of a Two-Component Burgers-Type Hierarchy
von: D. L. Blackmore, et al.
Veröffentlicht: (2015)