The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichmüller Space

In the first part of the paper we describe the complex geometry of the universal Teichmüller space T, which may be realized as an open subset in the complex Banach space of holomorphic quadratic differentials in the unit disc. The quotient S of the diffeomorphism group of the circle modulo Möbius tr...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2009
Автор: Sergeev, A.G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149245
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichmüller Space / A.G. Sergeev // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149245
record_format dspace
spelling Sergeev, A.G.
2019-02-19T19:17:48Z
2019-02-19T19:17:48Z
2009
The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichmüller Space / A.G. Sergeev // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 18 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 58E20; 53C28; 32L25
https://nasplib.isofts.kiev.ua/handle/123456789/149245
In the first part of the paper we describe the complex geometry of the universal Teichmüller space T, which may be realized as an open subset in the complex Banach space of holomorphic quadratic differentials in the unit disc. The quotient S of the diffeomorphism group of the circle modulo Möbius transformations may be treated as a smooth part of T. In the second part we consider the quantization of universal Teichmüller space T. We explain first how to quantize the smooth part S by embedding it into a Hilbert-Schmidt Siegel disc. This quantization method, however, does not apply to the whole universal Teichmüller space T, for its quantization we use an approach, due to Connes.
This paper is a contribution to the Special Issue on Kac–Moody Algebras and Applications. While preparing this paper, the author was partly supported by the RFBR grants 06-02-04012, 08-01-00014, by the program of Support of Scientific Schools (grant NSH-3224.2008.1), and by the Scientific Program of RAS “Nonlinear Dynamics”.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichmüller Space
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichmüller Space
spellingShingle The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichmüller Space
Sergeev, A.G.
title_short The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichmüller Space
title_full The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichmüller Space
title_fullStr The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichmüller Space
title_full_unstemmed The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichmüller Space
title_sort group of quasisymmetric homeomorphisms of the circle and quantization of the universal teichmüller space
author Sergeev, A.G.
author_facet Sergeev, A.G.
publishDate 2009
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In the first part of the paper we describe the complex geometry of the universal Teichmüller space T, which may be realized as an open subset in the complex Banach space of holomorphic quadratic differentials in the unit disc. The quotient S of the diffeomorphism group of the circle modulo Möbius transformations may be treated as a smooth part of T. In the second part we consider the quantization of universal Teichmüller space T. We explain first how to quantize the smooth part S by embedding it into a Hilbert-Schmidt Siegel disc. This quantization method, however, does not apply to the whole universal Teichmüller space T, for its quantization we use an approach, due to Connes.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149245
citation_txt The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichmüller Space / A.G. Sergeev // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT sergeevag thegroupofquasisymmetrichomeomorphismsofthecircleandquantizationoftheuniversalteichmullerspace
AT sergeevag groupofquasisymmetrichomeomorphismsofthecircleandquantizationoftheuniversalteichmullerspace
first_indexed 2025-12-07T18:28:34Z
last_indexed 2025-12-07T18:28:34Z
_version_ 1850875172225024000