Simple Finite Jordan Pseudoalgebras
We consider the structure of Jordan H-pseudoalgebras which are linearly finitely generated over a Hopf algebra H. There are two cases under consideration: H = U(h) and H = U(h) # C[Γ], where h is a finite-dimensional Lie algebra over C, Γ is an arbitrary group acting on U(h) by automorphisms. We con...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2009 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2009
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/149246 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Simple Finite Jordan Pseudoalgebras / P. Kolesnikov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-149246 |
|---|---|
| record_format |
dspace |
| spelling |
Kolesnikov, P. 2019-02-19T19:18:19Z 2019-02-19T19:18:19Z 2009 Simple Finite Jordan Pseudoalgebras / P. Kolesnikov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 17C50; 17B60; 16W30 https://nasplib.isofts.kiev.ua/handle/123456789/149246 We consider the structure of Jordan H-pseudoalgebras which are linearly finitely generated over a Hopf algebra H. There are two cases under consideration: H = U(h) and H = U(h) # C[Γ], where h is a finite-dimensional Lie algebra over C, Γ is an arbitrary group acting on U(h) by automorphisms. We construct an analogue of the Tits-Kantor-Koecher construction for finite Jordan pseudoalgebras and describe all simple ones. This paper is a contribution to the Special Issue on Kac–Moody Algebras and Applications. I am very grateful to L.A. Bokut, I.V. L’vov, E.I. Zel’manov, and V.N. Zhelyabin for their interest in the present work and helpful discussions. It is my pleasure to appreciate the ef forts of the referees, whose suggestions and comments helped me to make the paper readable. The work was partially supported by SSc-344.2008.1. I gratefully acknowledge the support of the Pierre Deligne fund based on his 2004 Balzan prize in mathematics, and Novosibirsk City Administration grant of 2008. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Simple Finite Jordan Pseudoalgebras Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Simple Finite Jordan Pseudoalgebras |
| spellingShingle |
Simple Finite Jordan Pseudoalgebras Kolesnikov, P. |
| title_short |
Simple Finite Jordan Pseudoalgebras |
| title_full |
Simple Finite Jordan Pseudoalgebras |
| title_fullStr |
Simple Finite Jordan Pseudoalgebras |
| title_full_unstemmed |
Simple Finite Jordan Pseudoalgebras |
| title_sort |
simple finite jordan pseudoalgebras |
| author |
Kolesnikov, P. |
| author_facet |
Kolesnikov, P. |
| publishDate |
2009 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We consider the structure of Jordan H-pseudoalgebras which are linearly finitely generated over a Hopf algebra H. There are two cases under consideration: H = U(h) and H = U(h) # C[Γ], where h is a finite-dimensional Lie algebra over C, Γ is an arbitrary group acting on U(h) by automorphisms. We construct an analogue of the Tits-Kantor-Koecher construction for finite Jordan pseudoalgebras and describe all simple ones.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/149246 |
| citation_txt |
Simple Finite Jordan Pseudoalgebras / P. Kolesnikov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ. |
| work_keys_str_mv |
AT kolesnikovp simplefinitejordanpseudoalgebras |
| first_indexed |
2025-12-07T15:26:41Z |
| last_indexed |
2025-12-07T15:26:41Z |
| _version_ |
1850863729140301824 |