Simple Finite Jordan Pseudoalgebras

We consider the structure of Jordan H-pseudoalgebras which are linearly finitely generated over a Hopf algebra H. There are two cases under consideration: H = U(h) and H = U(h) # C[Γ], where h is a finite-dimensional Lie algebra over C, Γ is an arbitrary group acting on U(h) by automorphisms. We con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2009
1. Verfasser: Kolesnikov, P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2009
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149246
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Simple Finite Jordan Pseudoalgebras / P. Kolesnikov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149246
record_format dspace
spelling Kolesnikov, P.
2019-02-19T19:18:19Z
2019-02-19T19:18:19Z
2009
Simple Finite Jordan Pseudoalgebras / P. Kolesnikov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 17C50; 17B60; 16W30
https://nasplib.isofts.kiev.ua/handle/123456789/149246
We consider the structure of Jordan H-pseudoalgebras which are linearly finitely generated over a Hopf algebra H. There are two cases under consideration: H = U(h) and H = U(h) # C[Γ], where h is a finite-dimensional Lie algebra over C, Γ is an arbitrary group acting on U(h) by automorphisms. We construct an analogue of the Tits-Kantor-Koecher construction for finite Jordan pseudoalgebras and describe all simple ones.
This paper is a contribution to the Special Issue on Kac–Moody Algebras and Applications. I am very grateful to L.A. Bokut, I.V. L’vov, E.I. Zel’manov, and V.N. Zhelyabin for their interest in the present work and helpful discussions. It is my pleasure to appreciate the ef forts of the referees, whose suggestions and comments helped me to make the paper readable. The work was partially supported by SSc-344.2008.1. I gratefully acknowledge the support of the Pierre Deligne fund based on his 2004 Balzan prize in mathematics, and Novosibirsk City Administration grant of 2008.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Simple Finite Jordan Pseudoalgebras
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Simple Finite Jordan Pseudoalgebras
spellingShingle Simple Finite Jordan Pseudoalgebras
Kolesnikov, P.
title_short Simple Finite Jordan Pseudoalgebras
title_full Simple Finite Jordan Pseudoalgebras
title_fullStr Simple Finite Jordan Pseudoalgebras
title_full_unstemmed Simple Finite Jordan Pseudoalgebras
title_sort simple finite jordan pseudoalgebras
author Kolesnikov, P.
author_facet Kolesnikov, P.
publishDate 2009
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We consider the structure of Jordan H-pseudoalgebras which are linearly finitely generated over a Hopf algebra H. There are two cases under consideration: H = U(h) and H = U(h) # C[Γ], where h is a finite-dimensional Lie algebra over C, Γ is an arbitrary group acting on U(h) by automorphisms. We construct an analogue of the Tits-Kantor-Koecher construction for finite Jordan pseudoalgebras and describe all simple ones.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149246
citation_txt Simple Finite Jordan Pseudoalgebras / P. Kolesnikov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ.
work_keys_str_mv AT kolesnikovp simplefinitejordanpseudoalgebras
first_indexed 2025-12-07T15:26:41Z
last_indexed 2025-12-07T15:26:41Z
_version_ 1850863729140301824