Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type

We introduce an odd double affine Hecke algebra (DaHa) generated by a classical Weyl group W and two skew-polynomial subalgebras of anticommuting generators. This algebra is shown to be Morita equivalent to another new DaHa which are generated by W and two polynomial-Clifford subalgebras. There is y...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2009
Main Authors: Khongsap, T., Wang, W.
Format: Article
Language:English
Published: Інститут математики НАН України 2009
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/149249
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type / T. Khongsap, W. Wang // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149249
record_format dspace
spelling Khongsap, T.
Wang, W.
2019-02-19T19:21:36Z
2019-02-19T19:21:36Z
2009
Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type / T. Khongsap, W. Wang // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 17 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 20C08
https://nasplib.isofts.kiev.ua/handle/123456789/149249
We introduce an odd double affine Hecke algebra (DaHa) generated by a classical Weyl group W and two skew-polynomial subalgebras of anticommuting generators. This algebra is shown to be Morita equivalent to another new DaHa which are generated by W and two polynomial-Clifford subalgebras. There is yet a third algebra containing a spin Weyl group algebra which is Morita (super)equivalent to the above two algebras. We establish the PBW properties and construct Verma-type representations via Dunkl operators for these algebras.
This paper is a contribution to the Special Issue on Dunkl Operators and Related Topics. This research is partially supported by NSF grant DMS-0800280. The main results of this paper for type A were obtained at MSRI in 2006.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type
spellingShingle Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type
Khongsap, T.
Wang, W.
title_short Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type
title_full Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type
title_fullStr Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type
title_full_unstemmed Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type
title_sort hecke-clifford algebras and spin hecke algebras iv: odd double affine type
author Khongsap, T.
Wang, W.
author_facet Khongsap, T.
Wang, W.
publishDate 2009
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We introduce an odd double affine Hecke algebra (DaHa) generated by a classical Weyl group W and two skew-polynomial subalgebras of anticommuting generators. This algebra is shown to be Morita equivalent to another new DaHa which are generated by W and two polynomial-Clifford subalgebras. There is yet a third algebra containing a spin Weyl group algebra which is Morita (super)equivalent to the above two algebras. We establish the PBW properties and construct Verma-type representations via Dunkl operators for these algebras.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149249
citation_txt Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type / T. Khongsap, W. Wang // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT khongsapt heckecliffordalgebrasandspinheckealgebrasivodddoubleaffinetype
AT wangw heckecliffordalgebrasandspinheckealgebrasivodddoubleaffinetype
first_indexed 2025-12-07T17:57:07Z
last_indexed 2025-12-07T17:57:07Z
_version_ 1850873193158410240