Structure Theory for Second Order 2D Superintegrable Systems with 1-Parameter Potentials

The structure theory for the quadratic algebra generated by first and second order constants of the motion for 2D second order superintegrable systems with nondegenerate (3-parameter) and or 2-parameter potentials is well understood, but the results for the strictly 1-parameter case have been incomp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2009
Hauptverfasser: Kalnins, E.G., Kress, J.M., Post, S., Miller Jr., W.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2009
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149255
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Structure Theory for Second Order 2D Superintegrable Systems with 1-Parameter Potentials / E.G. Kalnins, J.M. Kress, Willard Miller Jr., S. Post // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 27 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The structure theory for the quadratic algebra generated by first and second order constants of the motion for 2D second order superintegrable systems with nondegenerate (3-parameter) and or 2-parameter potentials is well understood, but the results for the strictly 1-parameter case have been incomplete. Here we work out this structure theory and prove that the quadratic algebra generated by first and second order constants of the motion for systems with 4 second order constants of the motion must close at order three with the functional relationship between the 4 generators of order four. We also show that every 1-parameter superintegrable system is Stäckel equivalent to a system on a constant curvature space.