Rational Solutions to the ABS List: Transformation Approach
In the paper we derive rational solutions for the lattice potential modified Korteweg-de Vries equation, and Q2, Q1(δ), H3(δ), H2 and H1 in the Adler-Bobenko-Suris list. Bäcklund transformations between these lattice equations are used. All these rational solutions are related to a unified τ functio...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2017 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2017
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/149259 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Rational Solutions to the ABS List: Transformation Approach / D. Zhang, D.J. Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-149259 |
|---|---|
| record_format |
dspace |
| spelling |
Zhang, D. Zhang, D.J. 2019-02-19T19:28:50Z 2019-02-19T19:28:50Z 2017 Rational Solutions to the ABS List: Transformation Approach / D. Zhang, D.J. Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35Q51; 35Q55 DOI:10.3842/SIGMA.2017.078 https://nasplib.isofts.kiev.ua/handle/123456789/149259 In the paper we derive rational solutions for the lattice potential modified Korteweg-de Vries equation, and Q2, Q1(δ), H3(δ), H2 and H1 in the Adler-Bobenko-Suris list. Bäcklund transformations between these lattice equations are used. All these rational solutions are related to a unified τ function in Casoratian form which obeys a bilinear superposition formula. This paper is a contribution to the Special Issue on Symmetries and Integrability of Dif ference Equations. The full collection is available at http://www.emis.de/journals/SIGMA/SIDE12.html. We are grateful to the referee for the invaluable comments. This project is supported by the NSF of China (no. 11371241 and no. 11631007). en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Rational Solutions to the ABS List: Transformation Approach Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Rational Solutions to the ABS List: Transformation Approach |
| spellingShingle |
Rational Solutions to the ABS List: Transformation Approach Zhang, D. Zhang, D.J. |
| title_short |
Rational Solutions to the ABS List: Transformation Approach |
| title_full |
Rational Solutions to the ABS List: Transformation Approach |
| title_fullStr |
Rational Solutions to the ABS List: Transformation Approach |
| title_full_unstemmed |
Rational Solutions to the ABS List: Transformation Approach |
| title_sort |
rational solutions to the abs list: transformation approach |
| author |
Zhang, D. Zhang, D.J. |
| author_facet |
Zhang, D. Zhang, D.J. |
| publishDate |
2017 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
In the paper we derive rational solutions for the lattice potential modified Korteweg-de Vries equation, and Q2, Q1(δ), H3(δ), H2 and H1 in the Adler-Bobenko-Suris list. Bäcklund transformations between these lattice equations are used. All these rational solutions are related to a unified τ function in Casoratian form which obeys a bilinear superposition formula.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/149259 |
| citation_txt |
Rational Solutions to the ABS List: Transformation Approach / D. Zhang, D.J. Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 22 назв. — англ. |
| work_keys_str_mv |
AT zhangd rationalsolutionstotheabslisttransformationapproach AT zhangdj rationalsolutionstotheabslisttransformationapproach |
| first_indexed |
2025-12-07T20:56:19Z |
| last_indexed |
2025-12-07T20:56:19Z |
| _version_ |
1850884467647840256 |