James' Submodule Theorem and the Steinberg Module

James' submodule theorem is a fundamental result in the representation theory of the symmetric groups and the finite general linear groups. In this note we consider a version of that theorem for a general finite group with a split BN-pair. This gives rise to a distinguished composition factor o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2017
1. Verfasser: Geck, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2017
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149266
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:James' Submodule Theorem and the Steinberg Module / M. Geck // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149266
record_format dspace
spelling Geck, M.
2019-02-19T19:32:10Z
2019-02-19T19:32:10Z
2017
James' Submodule Theorem and the Steinberg Module / M. Geck // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 10 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 20C33; 20C20
DOI:10.3842/SIGMA.2017.091
https://nasplib.isofts.kiev.ua/handle/123456789/149266
James' submodule theorem is a fundamental result in the representation theory of the symmetric groups and the finite general linear groups. In this note we consider a version of that theorem for a general finite group with a split BN-pair. This gives rise to a distinguished composition factor of the Steinberg module, first described by Hiss via a somewhat different method. It is a major open problem to determine the dimension of this composition factor.
This paper is a contribution to the Special Issue on the Representation Theory of the Symmetric Groups and Related Topics. The full collection is available at https://www.emis.de/journals/SIGMA/symmetric-groups2018.html.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
James' Submodule Theorem and the Steinberg Module
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title James' Submodule Theorem and the Steinberg Module
spellingShingle James' Submodule Theorem and the Steinberg Module
Geck, M.
title_short James' Submodule Theorem and the Steinberg Module
title_full James' Submodule Theorem and the Steinberg Module
title_fullStr James' Submodule Theorem and the Steinberg Module
title_full_unstemmed James' Submodule Theorem and the Steinberg Module
title_sort james' submodule theorem and the steinberg module
author Geck, M.
author_facet Geck, M.
publishDate 2017
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description James' submodule theorem is a fundamental result in the representation theory of the symmetric groups and the finite general linear groups. In this note we consider a version of that theorem for a general finite group with a split BN-pair. This gives rise to a distinguished composition factor of the Steinberg module, first described by Hiss via a somewhat different method. It is a major open problem to determine the dimension of this composition factor.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149266
citation_txt James' Submodule Theorem and the Steinberg Module / M. Geck // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT geckm jamessubmoduletheoremandthesteinbergmodule
first_indexed 2025-12-07T21:10:16Z
last_indexed 2025-12-07T21:10:16Z
_version_ 1850885345104625664