Parallelisms & Lie Connections
The aim of this article is to study rational parallelisms of algebraic varieties by means of the transcendence of their symmetries. The nature of this transcendence is measured by a Galois group built from the Picard-Vessiot theory of principal connections.
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2017 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2017
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/149267 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Parallelisms & Lie Connections / D. Blázquez-Sanz, G. Casale // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-149267 |
|---|---|
| record_format |
dspace |
| spelling |
Blázquez-Sanz, D. Casale, G. 2019-02-19T19:32:31Z 2019-02-19T19:32:31Z 2017 Parallelisms & Lie Connections / D. Blázquez-Sanz, G. Casale // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 14 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C05; 14L40; 14E05; 12H05 DOI:10.3842/SIGMA.2017.086 https://nasplib.isofts.kiev.ua/handle/123456789/149267 The aim of this article is to study rational parallelisms of algebraic varieties by means of the transcendence of their symmetries. The nature of this transcendence is measured by a Galois group built from the Picard-Vessiot theory of principal connections. The authors thank the ECOS-Nord program C12M01 and the project “IsoGalois” ANR-13- JS01-0002-01. They also thank the “Universidad Nacional de Colombia”(project HERMES code 37243) and the “Universit´e de Rennes 1” (Actions Internationales 2016) for supporting this reseach, and also the Centre Henri Lebesgue ANR-11-LABX-0020-01 for creating an attractive mathematical environment. The authors thank Juan Diego V´elez for his help with the final redaction of the manuscript and the anonymous referees who gave relevant contributions to improve the paper. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Parallelisms & Lie Connections Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Parallelisms & Lie Connections |
| spellingShingle |
Parallelisms & Lie Connections Blázquez-Sanz, D. Casale, G. |
| title_short |
Parallelisms & Lie Connections |
| title_full |
Parallelisms & Lie Connections |
| title_fullStr |
Parallelisms & Lie Connections |
| title_full_unstemmed |
Parallelisms & Lie Connections |
| title_sort |
parallelisms & lie connections |
| author |
Blázquez-Sanz, D. Casale, G. |
| author_facet |
Blázquez-Sanz, D. Casale, G. |
| publishDate |
2017 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
The aim of this article is to study rational parallelisms of algebraic varieties by means of the transcendence of their symmetries. The nature of this transcendence is measured by a Galois group built from the Picard-Vessiot theory of principal connections.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/149267 |
| citation_txt |
Parallelisms & Lie Connections / D. Blázquez-Sanz, G. Casale // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 14 назв. — англ. |
| work_keys_str_mv |
AT blazquezsanzd parallelismslieconnections AT casaleg parallelismslieconnections |
| first_indexed |
2025-12-07T18:48:51Z |
| last_indexed |
2025-12-07T18:48:51Z |
| _version_ |
1850876448371376128 |