Parallelisms & Lie Connections

The aim of this article is to study rational parallelisms of algebraic varieties by means of the transcendence of their symmetries. The nature of this transcendence is measured by a Galois group built from the Picard-Vessiot theory of principal connections.

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2017
Автори: Blázquez-Sanz, D., Casale, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149267
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Parallelisms & Lie Connections / D. Blázquez-Sanz, G. Casale // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149267
record_format dspace
spelling Blázquez-Sanz, D.
Casale, G.
2019-02-19T19:32:31Z
2019-02-19T19:32:31Z
2017
Parallelisms & Lie Connections / D. Blázquez-Sanz, G. Casale // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 14 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53C05; 14L40; 14E05; 12H05
DOI:10.3842/SIGMA.2017.086
https://nasplib.isofts.kiev.ua/handle/123456789/149267
The aim of this article is to study rational parallelisms of algebraic varieties by means of the transcendence of their symmetries. The nature of this transcendence is measured by a Galois group built from the Picard-Vessiot theory of principal connections.
The authors thank the ECOS-Nord program C12M01 and the project “IsoGalois” ANR-13- JS01-0002-01. They also thank the “Universidad Nacional de Colombia”(project HERMES code 37243) and the “Universit´e de Rennes 1” (Actions Internationales 2016) for supporting this reseach, and also the Centre Henri Lebesgue ANR-11-LABX-0020-01 for creating an attractive mathematical environment. The authors thank Juan Diego V´elez for his help with the final redaction of the manuscript and the anonymous referees who gave relevant contributions to improve the paper.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Parallelisms & Lie Connections
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Parallelisms & Lie Connections
spellingShingle Parallelisms & Lie Connections
Blázquez-Sanz, D.
Casale, G.
title_short Parallelisms & Lie Connections
title_full Parallelisms & Lie Connections
title_fullStr Parallelisms & Lie Connections
title_full_unstemmed Parallelisms & Lie Connections
title_sort parallelisms & lie connections
author Blázquez-Sanz, D.
Casale, G.
author_facet Blázquez-Sanz, D.
Casale, G.
publishDate 2017
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The aim of this article is to study rational parallelisms of algebraic varieties by means of the transcendence of their symmetries. The nature of this transcendence is measured by a Galois group built from the Picard-Vessiot theory of principal connections.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149267
citation_txt Parallelisms & Lie Connections / D. Blázquez-Sanz, G. Casale // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT blazquezsanzd parallelismslieconnections
AT casaleg parallelismslieconnections
first_indexed 2025-12-07T18:48:51Z
last_indexed 2025-12-07T18:48:51Z
_version_ 1850876448371376128