Parallelisms & Lie Connections
The aim of this article is to study rational parallelisms of algebraic varieties by means of the transcendence of their symmetries. The nature of this transcendence is measured by a Galois group built from the Picard-Vessiot theory of principal connections.
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2017 |
| Hauptverfasser: | Blázquez-Sanz, D., Casale, G. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2017
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/149267 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Parallelisms & Lie Connections / D. Blázquez-Sanz, G. Casale // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Differential Galois Theory and Lie Symmetries
von: Blázquez-Sanz, D., et al.
Veröffentlicht: (2015) -
Differential Galois Theory and Isomonodromic Deformations
von: Blázquez Sanz, D., et al.
Veröffentlicht: (2019) -
Cartan Connections and Lie Algebroids
von: Crampin, M.
Veröffentlicht: (2009) -
Cartan Connections on Lie Groupoids and their Integrability
von: Blaom, A.D.
Veröffentlicht: (2016) -
On the Lie algebra structures connected with Hamiltonian dynamical systems
von: Smirnov, R.G.
Veröffentlicht: (1997)