A Universal Genus-Two Curve from Siegel Modular Forms

Let p be any point in the moduli space of genus-two curves M2 and K its field of moduli. We provide a universal equation of a genus-two curve Cα,β defined over K(α,β), corresponding to p, where α and β satisfy a quadratic α²+bβ²=c such that b and c are given in terms of ratios of Siegel modular form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2017
Hauptverfasser: Malmendier, A., Shaska, T.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2017
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149268
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A Universal Genus-Two Curve from Siegel Modular Forms / A. Malmendier, T. Shaska // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149268
record_format dspace
spelling Malmendier, A.
Shaska, T.
2019-02-19T19:32:49Z
2019-02-19T19:32:49Z
2017
A Universal Genus-Two Curve from Siegel Modular Forms / A. Malmendier, T. Shaska // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 14H10; 14H45
DOI:10.3842/SIGMA.2017.089
https://nasplib.isofts.kiev.ua/handle/123456789/149268
Let p be any point in the moduli space of genus-two curves M2 and K its field of moduli. We provide a universal equation of a genus-two curve Cα,β defined over K(α,β), corresponding to p, where α and β satisfy a quadratic α²+bβ²=c such that b and c are given in terms of ratios of Siegel modular forms. The curve Cα,β is defined over the field of moduli K if and only if the quadratic has a K-rational point (α,β). We discover some interesting symmetries of the Weierstrass equation of Cα,β. This extends previous work of Mestre and others.
This paper is a contribution to the Special Issue on Modular Forms and String Theory in honor of Noriko Yui. The full collection is available at http://www.emis.de/journals/SIGMA/modular-forms.html.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
A Universal Genus-Two Curve from Siegel Modular Forms
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A Universal Genus-Two Curve from Siegel Modular Forms
spellingShingle A Universal Genus-Two Curve from Siegel Modular Forms
Malmendier, A.
Shaska, T.
title_short A Universal Genus-Two Curve from Siegel Modular Forms
title_full A Universal Genus-Two Curve from Siegel Modular Forms
title_fullStr A Universal Genus-Two Curve from Siegel Modular Forms
title_full_unstemmed A Universal Genus-Two Curve from Siegel Modular Forms
title_sort universal genus-two curve from siegel modular forms
author Malmendier, A.
Shaska, T.
author_facet Malmendier, A.
Shaska, T.
publishDate 2017
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Let p be any point in the moduli space of genus-two curves M2 and K its field of moduli. We provide a universal equation of a genus-two curve Cα,β defined over K(α,β), corresponding to p, where α and β satisfy a quadratic α²+bβ²=c such that b and c are given in terms of ratios of Siegel modular forms. The curve Cα,β is defined over the field of moduli K if and only if the quadratic has a K-rational point (α,β). We discover some interesting symmetries of the Weierstrass equation of Cα,β. This extends previous work of Mestre and others.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149268
citation_txt A Universal Genus-Two Curve from Siegel Modular Forms / A. Malmendier, T. Shaska // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ.
work_keys_str_mv AT malmendiera auniversalgenustwocurvefromsiegelmodularforms
AT shaskat auniversalgenustwocurvefromsiegelmodularforms
AT malmendiera universalgenustwocurvefromsiegelmodularforms
AT shaskat universalgenustwocurvefromsiegelmodularforms
first_indexed 2025-12-07T16:29:09Z
last_indexed 2025-12-07T16:29:09Z
_version_ 1850867658878091264