Differential Calculus on h-Deformed Spaces
We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators Diffh,σ(n) is labeled by...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2017 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2017
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/149274 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Differential Calculus on h-Deformed Spaces / B. Herlemont, O. Ogievetsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-149274 |
|---|---|
| record_format |
dspace |
| spelling |
Herlemont, B. Ogievetsky, O. 2019-02-19T19:40:42Z 2019-02-19T19:40:42Z 2017 Differential Calculus on h-Deformed Spaces / B. Herlemont, O. Ogievetsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 16S30; 16S32; 16T25; 13B30; 17B10; 39A14 DOI:10.3842/SIGMA.2017.082 https://nasplib.isofts.kiev.ua/handle/123456789/149274 We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators Diffh,σ(n) is labeled by a rational function σ in n variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system and describe some properties of the rings Diffh,σ(n). This paper is a contribution to the Special Issue on Recent Advances in Quantum Integrable Systems. The full collection is available at http://www.emis.de/journals/SIGMA/RAQIS2016.html. The work of O.O. was supported by the Program of Competitive Growth of Kazan Federal University and by the grant RFBR 17-01-00585. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Differential Calculus on h-Deformed Spaces Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Differential Calculus on h-Deformed Spaces |
| spellingShingle |
Differential Calculus on h-Deformed Spaces Herlemont, B. Ogievetsky, O. |
| title_short |
Differential Calculus on h-Deformed Spaces |
| title_full |
Differential Calculus on h-Deformed Spaces |
| title_fullStr |
Differential Calculus on h-Deformed Spaces |
| title_full_unstemmed |
Differential Calculus on h-Deformed Spaces |
| title_sort |
differential calculus on h-deformed spaces |
| author |
Herlemont, B. Ogievetsky, O. |
| author_facet |
Herlemont, B. Ogievetsky, O. |
| publishDate |
2017 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators Diffh,σ(n) is labeled by a rational function σ in n variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system and describe some properties of the rings Diffh,σ(n).
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/149274 |
| citation_txt |
Differential Calculus on h-Deformed Spaces / B. Herlemont, O. Ogievetsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 22 назв. — англ. |
| work_keys_str_mv |
AT herlemontb differentialcalculusonhdeformedspaces AT ogievetskyo differentialcalculusonhdeformedspaces |
| first_indexed |
2025-12-07T18:44:59Z |
| last_indexed |
2025-12-07T18:44:59Z |
| _version_ |
1850876204976963584 |