Differential Calculus on h-Deformed Spaces

We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators Diffh,σ(n) is labeled by...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2017
Автори: Herlemont, B., Ogievetsky, O.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149274
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Differential Calculus on h-Deformed Spaces / B. Herlemont, O. Ogievetsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149274
record_format dspace
spelling Herlemont, B.
Ogievetsky, O.
2019-02-19T19:40:42Z
2019-02-19T19:40:42Z
2017
Differential Calculus on h-Deformed Spaces / B. Herlemont, O. Ogievetsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 22 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 16S30; 16S32; 16T25; 13B30; 17B10; 39A14
DOI:10.3842/SIGMA.2017.082
https://nasplib.isofts.kiev.ua/handle/123456789/149274
We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators Diffh,σ(n) is labeled by a rational function σ in n variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system and describe some properties of the rings Diffh,σ(n).
This paper is a contribution to the Special Issue on Recent Advances in Quantum Integrable Systems. The full collection is available at http://www.emis.de/journals/SIGMA/RAQIS2016.html. The work of O.O. was supported by the Program of Competitive Growth of Kazan Federal University and by the grant RFBR 17-01-00585.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Differential Calculus on h-Deformed Spaces
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Differential Calculus on h-Deformed Spaces
spellingShingle Differential Calculus on h-Deformed Spaces
Herlemont, B.
Ogievetsky, O.
title_short Differential Calculus on h-Deformed Spaces
title_full Differential Calculus on h-Deformed Spaces
title_fullStr Differential Calculus on h-Deformed Spaces
title_full_unstemmed Differential Calculus on h-Deformed Spaces
title_sort differential calculus on h-deformed spaces
author Herlemont, B.
Ogievetsky, O.
author_facet Herlemont, B.
Ogievetsky, O.
publishDate 2017
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators Diffh,σ(n) is labeled by a rational function σ in n variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system and describe some properties of the rings Diffh,σ(n).
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149274
citation_txt Differential Calculus on h-Deformed Spaces / B. Herlemont, O. Ogievetsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 22 назв. — англ.
work_keys_str_mv AT herlemontb differentialcalculusonhdeformedspaces
AT ogievetskyo differentialcalculusonhdeformedspaces
first_indexed 2025-12-07T18:44:59Z
last_indexed 2025-12-07T18:44:59Z
_version_ 1850876204976963584