Twists of Elliptic Curves
In this note we extend the theory of twists of elliptic curves as presented in various standard texts for characteristic not equal to two or three to the remaining characteristics. For this, we make explicit use of the correspondence between the twists and the Galois cohomology set H¹(GK¯/K,AutK¯(E)...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2017 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2017
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/149277 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Twists of Elliptic Curves / M. Kronberg, M.A. Soomro, J. Top // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 24 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-149277 |
|---|---|
| record_format |
dspace |
| spelling |
Kronberg, M. Soomro, M.A. Top, J. 2019-02-19T19:45:04Z 2019-02-19T19:45:04Z 2017 Twists of Elliptic Curves / M. Kronberg, M.A. Soomro, J. Top // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 24 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 11G05; 11G25; 14G1 DOI:10.3842/SIGMA.2017.083 https://nasplib.isofts.kiev.ua/handle/123456789/149277 In this note we extend the theory of twists of elliptic curves as presented in various standard texts for characteristic not equal to two or three to the remaining characteristics. For this, we make explicit use of the correspondence between the twists and the Galois cohomology set H¹(GK¯/K,AutK¯(E)). The results are illustrated by examples. This paper is a contribution to the Special Issue on Modular Forms and String Theory in honor of Noriko Yui. The full collection is available at http://www.emis.de/journals/SIGMA/modular-forms.html. It is a pleasure to thank Joe Silverman, John Cremona, Nurdag¨ul Anbar Meidl, and Jan Stef fen M¨uller for helpful comments, advise, and support while preparing this paper. We are especially grateful for the many useful suggestions of the two referees of the first draft of this, which we hope have improved the readability of the text a lot. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Twists of Elliptic Curves Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Twists of Elliptic Curves |
| spellingShingle |
Twists of Elliptic Curves Kronberg, M. Soomro, M.A. Top, J. |
| title_short |
Twists of Elliptic Curves |
| title_full |
Twists of Elliptic Curves |
| title_fullStr |
Twists of Elliptic Curves |
| title_full_unstemmed |
Twists of Elliptic Curves |
| title_sort |
twists of elliptic curves |
| author |
Kronberg, M. Soomro, M.A. Top, J. |
| author_facet |
Kronberg, M. Soomro, M.A. Top, J. |
| publishDate |
2017 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
In this note we extend the theory of twists of elliptic curves as presented in various standard texts for characteristic not equal to two or three to the remaining characteristics. For this, we make explicit use of the correspondence between the twists and the Galois cohomology set H¹(GK¯/K,AutK¯(E)). The results are illustrated by examples.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/149277 |
| citation_txt |
Twists of Elliptic Curves / M. Kronberg, M.A. Soomro, J. Top // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 24 назв. — англ. |
| work_keys_str_mv |
AT kronbergm twistsofellipticcurves AT soomroma twistsofellipticcurves AT topj twistsofellipticcurves |
| first_indexed |
2025-12-07T17:37:37Z |
| last_indexed |
2025-12-07T17:37:37Z |
| _version_ |
1850871966180835328 |