Twists of Elliptic Curves

In this note we extend the theory of twists of elliptic curves as presented in various standard texts for characteristic not equal to two or three to the remaining characteristics. For this, we make explicit use of the correspondence between the twists and the Galois cohomology set H¹(GK¯/K,AutK¯(E)...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2017
Автори: Kronberg, M., Soomro, M.A., Top, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149277
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Twists of Elliptic Curves / M. Kronberg, M.A. Soomro, J. Top // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149277
record_format dspace
spelling Kronberg, M.
Soomro, M.A.
Top, J.
2019-02-19T19:45:04Z
2019-02-19T19:45:04Z
2017
Twists of Elliptic Curves / M. Kronberg, M.A. Soomro, J. Top // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 24 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 11G05; 11G25; 14G1
DOI:10.3842/SIGMA.2017.083
https://nasplib.isofts.kiev.ua/handle/123456789/149277
In this note we extend the theory of twists of elliptic curves as presented in various standard texts for characteristic not equal to two or three to the remaining characteristics. For this, we make explicit use of the correspondence between the twists and the Galois cohomology set H¹(GK¯/K,AutK¯(E)). The results are illustrated by examples.
This paper is a contribution to the Special Issue on Modular Forms and String Theory in honor of Noriko Yui. The full collection is available at http://www.emis.de/journals/SIGMA/modular-forms.html. It is a pleasure to thank Joe Silverman, John Cremona, Nurdag¨ul Anbar Meidl, and Jan Stef fen M¨uller for helpful comments, advise, and support while preparing this paper. We are especially grateful for the many useful suggestions of the two referees of the first draft of this, which we hope have improved the readability of the text a lot.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Twists of Elliptic Curves
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Twists of Elliptic Curves
spellingShingle Twists of Elliptic Curves
Kronberg, M.
Soomro, M.A.
Top, J.
title_short Twists of Elliptic Curves
title_full Twists of Elliptic Curves
title_fullStr Twists of Elliptic Curves
title_full_unstemmed Twists of Elliptic Curves
title_sort twists of elliptic curves
author Kronberg, M.
Soomro, M.A.
Top, J.
author_facet Kronberg, M.
Soomro, M.A.
Top, J.
publishDate 2017
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In this note we extend the theory of twists of elliptic curves as presented in various standard texts for characteristic not equal to two or three to the remaining characteristics. For this, we make explicit use of the correspondence between the twists and the Galois cohomology set H¹(GK¯/K,AutK¯(E)). The results are illustrated by examples.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149277
citation_txt Twists of Elliptic Curves / M. Kronberg, M.A. Soomro, J. Top // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 24 назв. — англ.
work_keys_str_mv AT kronbergm twistsofellipticcurves
AT soomroma twistsofellipticcurves
AT topj twistsofellipticcurves
first_indexed 2025-12-07T17:37:37Z
last_indexed 2025-12-07T17:37:37Z
_version_ 1850871966180835328