A Connection Formula for the q-Confluent Hypergeometric Function
We show a connection formula for the q-confluent hypergeometric functions ₂φ₁(a,b;0;q,x). Combining our connection formula with Zhang's connection formula for ₂φ₀(a,b;−;q,x), we obtain the connection formula for the q-confluent hypergeometric equation in the matrix form. Also we obtain the conn...
Збережено в:
| Дата: | 2013 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2013
|
| Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/149343 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | A Connection Formula for the q-Confluent Hypergeometric Function / T. Morita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | We show a connection formula for the q-confluent hypergeometric functions ₂φ₁(a,b;0;q,x). Combining our connection formula with Zhang's connection formula for ₂φ₀(a,b;−;q,x), we obtain the connection formula for the q-confluent hypergeometric equation in the matrix form. Also we obtain the connection formula of Kummer's confluent hypergeometric functions by taking the limit q→1− of our connection formula. |
|---|