A Connection Formula for the q-Confluent Hypergeometric Function

We show a connection formula for the q-confluent hypergeometric functions ₂φ₁(a,b;0;q,x). Combining our connection formula with Zhang's connection formula for ₂φ₀(a,b;−;q,x), we obtain the connection formula for the q-confluent hypergeometric equation in the matrix form. Also we obtain the conn...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2013
Main Author: Morita, T.
Format: Article
Language:English
Published: Інститут математики НАН України 2013
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/149343
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A Connection Formula for the q-Confluent Hypergeometric Function / T. Morita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149343
record_format dspace
spelling Morita, T.
2019-02-21T07:04:56Z
2019-02-21T07:04:56Z
2013
A Connection Formula for the q-Confluent Hypergeometric Function / T. Morita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 10 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 33D15; 34M40; 39A13
DOI: http://dx.doi.org/10.3842/SIGMA.2013.050
https://nasplib.isofts.kiev.ua/handle/123456789/149343
We show a connection formula for the q-confluent hypergeometric functions ₂φ₁(a,b;0;q,x). Combining our connection formula with Zhang's connection formula for ₂φ₀(a,b;−;q,x), we obtain the connection formula for the q-confluent hypergeometric equation in the matrix form. Also we obtain the connection formula of Kummer's confluent hypergeometric functions by taking the limit q→1− of our connection formula.
The author would like to give heartfelt thanks to Professor Yousuke Ohyama who provided carefully considered feedback and many valuable comments. The author also would like to thank the anonymous referees for their helpful comments
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
A Connection Formula for the q-Confluent Hypergeometric Function
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A Connection Formula for the q-Confluent Hypergeometric Function
spellingShingle A Connection Formula for the q-Confluent Hypergeometric Function
Morita, T.
title_short A Connection Formula for the q-Confluent Hypergeometric Function
title_full A Connection Formula for the q-Confluent Hypergeometric Function
title_fullStr A Connection Formula for the q-Confluent Hypergeometric Function
title_full_unstemmed A Connection Formula for the q-Confluent Hypergeometric Function
title_sort connection formula for the q-confluent hypergeometric function
author Morita, T.
author_facet Morita, T.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We show a connection formula for the q-confluent hypergeometric functions ₂φ₁(a,b;0;q,x). Combining our connection formula with Zhang's connection formula for ₂φ₀(a,b;−;q,x), we obtain the connection formula for the q-confluent hypergeometric equation in the matrix form. Also we obtain the connection formula of Kummer's confluent hypergeometric functions by taking the limit q→1− of our connection formula.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149343
citation_txt A Connection Formula for the q-Confluent Hypergeometric Function / T. Morita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT moritat aconnectionformulafortheqconfluenthypergeometricfunction
AT moritat connectionformulafortheqconfluenthypergeometricfunction
first_indexed 2025-12-01T10:51:06Z
last_indexed 2025-12-01T10:51:06Z
_version_ 1850859950485536768