A Connection Formula for the q-Confluent Hypergeometric Function
We show a connection formula for the q-confluent hypergeometric functions ₂φ₁(a,b;0;q,x). Combining our connection formula with Zhang's connection formula for ₂φ₀(a,b;−;q,x), we obtain the connection formula for the q-confluent hypergeometric equation in the matrix form. Also we obtain the conn...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2013 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2013
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/149343 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | A Connection Formula for the q-Confluent Hypergeometric Function / T. Morita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-149343 |
|---|---|
| record_format |
dspace |
| spelling |
Morita, T. 2019-02-21T07:04:56Z 2019-02-21T07:04:56Z 2013 A Connection Formula for the q-Confluent Hypergeometric Function / T. Morita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 10 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33D15; 34M40; 39A13 DOI: http://dx.doi.org/10.3842/SIGMA.2013.050 https://nasplib.isofts.kiev.ua/handle/123456789/149343 We show a connection formula for the q-confluent hypergeometric functions ₂φ₁(a,b;0;q,x). Combining our connection formula with Zhang's connection formula for ₂φ₀(a,b;−;q,x), we obtain the connection formula for the q-confluent hypergeometric equation in the matrix form. Also we obtain the connection formula of Kummer's confluent hypergeometric functions by taking the limit q→1− of our connection formula. The author would like to give heartfelt thanks to Professor Yousuke Ohyama who provided carefully considered feedback and many valuable comments. The author also would like to thank the anonymous referees for their helpful comments en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications A Connection Formula for the q-Confluent Hypergeometric Function Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
A Connection Formula for the q-Confluent Hypergeometric Function |
| spellingShingle |
A Connection Formula for the q-Confluent Hypergeometric Function Morita, T. |
| title_short |
A Connection Formula for the q-Confluent Hypergeometric Function |
| title_full |
A Connection Formula for the q-Confluent Hypergeometric Function |
| title_fullStr |
A Connection Formula for the q-Confluent Hypergeometric Function |
| title_full_unstemmed |
A Connection Formula for the q-Confluent Hypergeometric Function |
| title_sort |
connection formula for the q-confluent hypergeometric function |
| author |
Morita, T. |
| author_facet |
Morita, T. |
| publishDate |
2013 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We show a connection formula for the q-confluent hypergeometric functions ₂φ₁(a,b;0;q,x). Combining our connection formula with Zhang's connection formula for ₂φ₀(a,b;−;q,x), we obtain the connection formula for the q-confluent hypergeometric equation in the matrix form. Also we obtain the connection formula of Kummer's confluent hypergeometric functions by taking the limit q→1− of our connection formula.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/149343 |
| citation_txt |
A Connection Formula for the q-Confluent Hypergeometric Function / T. Morita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT moritat aconnectionformulafortheqconfluenthypergeometricfunction AT moritat connectionformulafortheqconfluenthypergeometricfunction |
| first_indexed |
2025-12-01T10:51:06Z |
| last_indexed |
2025-12-01T10:51:06Z |
| _version_ |
1850859950485536768 |