A Connection Formula for the q-Confluent Hypergeometric Function
We show a connection formula for the q-confluent hypergeometric functions ₂φ₁(a,b;0;q,x). Combining our connection formula with Zhang's connection formula for ₂φ₀(a,b;−;q,x), we obtain the connection formula for the q-confluent hypergeometric equation in the matrix form. Also we obtain the conn...
Gespeichert in:
| Datum: | 2013 |
|---|---|
| 1. Verfasser: | Morita, T. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2013
|
| Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/149343 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | A Connection Formula for the q-Confluent Hypergeometric Function / T. Morita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
On transformation formulas for theta hypergeometric functions
von: Denis, R.Y., et al.
Veröffentlicht: (2012) -
Quasi-Orthogonality of Some Hypergeometric and q-Hypergeometric Polynomials
von: Tcheutia, D.D., et al.
Veröffentlicht: (2018) -
Hypergeometric τ-Functions of the q-Painlevé System of Type E₇⁽¹⁾
von: Masuda, T.
Veröffentlicht: (2009) -
Hypergeometric τ Functions of the q-Painlevé Systems of Types A⁽¹⁾₄ and (A₁+A′₁)⁽¹⁾
von: Nakazono, N.
Veröffentlicht: (2016) -
Well-posed reduction formulas for the q-Kampé-de-Fériet function
von: Chu, W., et al.
Veröffentlicht: (2010)