Twisted Cyclic Cohomology and Modular Fredholm Modules

Connes and Cuntz showed in [Comm. Math. Phys. 114 (1988), 515-526] that suitable cyclic cocycles can be represented as Chern characters of finitely summable semifinite Fredholm modules. We show an analogous result in twisted cyclic cohomology using Chern characters of modular Fredholm modules. We pr...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2013
Автори: Rennie, A., Sitarz, A., Yamashita, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149344
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Twisted Cyclic Cohomology and Modular Fredholm Modules / A. Rennie, A. Sitarz, M. Yamashita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149344
record_format dspace
spelling Rennie, A.
Sitarz, A.
Yamashita, M.
2019-02-21T07:05:19Z
2019-02-21T07:05:19Z
2013
Twisted Cyclic Cohomology and Modular Fredholm Modules / A. Rennie, A. Sitarz, M. Yamashita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 21 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 58J42; 58B32; 46L87
DOI: http://dx.doi.org/10.3842/SIGMA.2013.051
https://nasplib.isofts.kiev.ua/handle/123456789/149344
Connes and Cuntz showed in [Comm. Math. Phys. 114 (1988), 515-526] that suitable cyclic cocycles can be represented as Chern characters of finitely summable semifinite Fredholm modules. We show an analogous result in twisted cyclic cohomology using Chern characters of modular Fredholm modules. We present examples of modular Fredholm modules arising from Podleś spheres and from SUq(2).
AR was supported by the Australian Research Council, and thanks Jens Kaad for numerous discussions on related topics. MY was supported in part by the ERC Advanced Grant 227458 OACFT “Operator Algebras and Conformal Field Theory”. AS acknowledges support of MNII grant 189/6.PRUE/2007/7 and thanks for the warm hospitality at Mathematical Sciences Institute, Australian National University, Canberra.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Twisted Cyclic Cohomology and Modular Fredholm Modules
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Twisted Cyclic Cohomology and Modular Fredholm Modules
spellingShingle Twisted Cyclic Cohomology and Modular Fredholm Modules
Rennie, A.
Sitarz, A.
Yamashita, M.
title_short Twisted Cyclic Cohomology and Modular Fredholm Modules
title_full Twisted Cyclic Cohomology and Modular Fredholm Modules
title_fullStr Twisted Cyclic Cohomology and Modular Fredholm Modules
title_full_unstemmed Twisted Cyclic Cohomology and Modular Fredholm Modules
title_sort twisted cyclic cohomology and modular fredholm modules
author Rennie, A.
Sitarz, A.
Yamashita, M.
author_facet Rennie, A.
Sitarz, A.
Yamashita, M.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Connes and Cuntz showed in [Comm. Math. Phys. 114 (1988), 515-526] that suitable cyclic cocycles can be represented as Chern characters of finitely summable semifinite Fredholm modules. We show an analogous result in twisted cyclic cohomology using Chern characters of modular Fredholm modules. We present examples of modular Fredholm modules arising from Podleś spheres and from SUq(2).
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149344
citation_txt Twisted Cyclic Cohomology and Modular Fredholm Modules / A. Rennie, A. Sitarz, M. Yamashita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 21 назв. — англ.
work_keys_str_mv AT renniea twistedcycliccohomologyandmodularfredholmmodules
AT sitarza twistedcycliccohomologyandmodularfredholmmodules
AT yamashitam twistedcycliccohomologyandmodularfredholmmodules
first_indexed 2025-12-07T13:22:30Z
last_indexed 2025-12-07T13:22:30Z
_version_ 1850855915813601280