Invariant Discretization Schemes Using Evolution-Projection Techniques
Finite difference discretization schemes preserving a subgroup of the maximal Lie invariance group of the one-dimensional linear heat equation are determined. These invariant schemes are constructed using the invariantization procedure for non-invariant schemes of the heat equation in computational...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2013 |
| Main Authors: | Bihlo, A., Nave, J. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2013
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/149346 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Invariant Discretization Schemes Using Evolution-Projection Techniques / A. Bihlo, J. Nave // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 35 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Differential Invariants of Conformal and Projective Surfaces
by: Hubert, E., et al.
Published: (2007) -
Invariant varieties of periodic points for the discrete Euler top
by: Saito, S., et al.
Published: (2006) -
Natural and Projectively Invariant Quantizations on Supermanifolds
by: Leuther, T., et al.
Published: (2011) -
Projection invariant t-Baer and related modules
by: Y. Kara
Published: (2023) -
Deterministic and stochastic schemes method of projection subgradient
by: A. F. Godonoga, et al.
Published: (2015)