spo(2|2)-Equivariant Quantizations on the Supercircle S¹|²

We consider the space of differential operators Dλμ acting between λ- and μ-densities defined on S¹|² endowed with its standard contact structure. This contact structure allows one to define a filtration on Dλμ which is finer than the classical one, obtained by writting a differential operator in te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2013
Hauptverfasser: Mellouli, N., Nibirantiza, A., Radoux, F.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2013
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149350
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:spo(2|2)-Equivariant Quantizations on the Supercircle S¹|² / N. Mellouli, A. Nibirantiza, F. Radoux // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 27 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149350
record_format dspace
spelling Mellouli, N.
Nibirantiza, A.
Radoux, F.
2019-02-21T07:08:09Z
2019-02-21T07:08:09Z
2013
spo(2|2)-Equivariant Quantizations on the Supercircle S¹|² / N. Mellouli, A. Nibirantiza, F. Radoux // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 27 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53D10; 17B66; 17B10
DOI: http://dx.doi.org/10.3842/SIGMA.2013.055
https://nasplib.isofts.kiev.ua/handle/123456789/149350
We consider the space of differential operators Dλμ acting between λ- and μ-densities defined on S¹|² endowed with its standard contact structure. This contact structure allows one to define a filtration on Dλμ which is finer than the classical one, obtained by writting a differential operator in terms of the partial derivatives with respect to the different coordinates. The space Dλμ and the associated graded space of symbols Sδ (δ=μ−λ) can be considered as spo(2|2)-modules, where spo(2|2) is the Lie superalgebra of contact projective vector fields on S¹|². We show in this paper that there is a unique isomorphism of spo(2|2)-modules between Sδ and Dλμ that preserves the principal symbol (i.e. an spo(2|2)-equivariant quantization) for some values of δ called non-critical values. Moreover, we give an explicit formula for this isomorphism, extending in this way the results of [Mellouli N., SIGMA 5 (2009), 111, 11 pages] which were established for second-order differential operators. The method used here to build the spo(2|2)-equivariant quantization is the same as the one used in [Mathonet P., Radoux F., Lett. Math. Phys. 98 (2011), 311-331] to prove the existence of a pgl(p+1|q)-equivariant quantization on Rp|q.
It is a pleasure to thank T. Leuther, P. Mathonet, J.-P. Michel and V. Ovsienko for numerous fruitful discussions and for their interest in our work. We also warmly thank the referees for their suggestions and remarks which considerably improved the paper. This research has been funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
spo(2|2)-Equivariant Quantizations on the Supercircle S¹|²
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title spo(2|2)-Equivariant Quantizations on the Supercircle S¹|²
spellingShingle spo(2|2)-Equivariant Quantizations on the Supercircle S¹|²
Mellouli, N.
Nibirantiza, A.
Radoux, F.
title_short spo(2|2)-Equivariant Quantizations on the Supercircle S¹|²
title_full spo(2|2)-Equivariant Quantizations on the Supercircle S¹|²
title_fullStr spo(2|2)-Equivariant Quantizations on the Supercircle S¹|²
title_full_unstemmed spo(2|2)-Equivariant Quantizations on the Supercircle S¹|²
title_sort spo(2|2)-equivariant quantizations on the supercircle s¹|²
author Mellouli, N.
Nibirantiza, A.
Radoux, F.
author_facet Mellouli, N.
Nibirantiza, A.
Radoux, F.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We consider the space of differential operators Dλμ acting between λ- and μ-densities defined on S¹|² endowed with its standard contact structure. This contact structure allows one to define a filtration on Dλμ which is finer than the classical one, obtained by writting a differential operator in terms of the partial derivatives with respect to the different coordinates. The space Dλμ and the associated graded space of symbols Sδ (δ=μ−λ) can be considered as spo(2|2)-modules, where spo(2|2) is the Lie superalgebra of contact projective vector fields on S¹|². We show in this paper that there is a unique isomorphism of spo(2|2)-modules between Sδ and Dλμ that preserves the principal symbol (i.e. an spo(2|2)-equivariant quantization) for some values of δ called non-critical values. Moreover, we give an explicit formula for this isomorphism, extending in this way the results of [Mellouli N., SIGMA 5 (2009), 111, 11 pages] which were established for second-order differential operators. The method used here to build the spo(2|2)-equivariant quantization is the same as the one used in [Mathonet P., Radoux F., Lett. Math. Phys. 98 (2011), 311-331] to prove the existence of a pgl(p+1|q)-equivariant quantization on Rp|q.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149350
citation_txt spo(2|2)-Equivariant Quantizations on the Supercircle S¹|² / N. Mellouli, A. Nibirantiza, F. Radoux // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 27 назв. — англ.
work_keys_str_mv AT melloulin spo22equivariantquantizationsonthesupercircles12
AT nibirantizaa spo22equivariantquantizationsonthesupercircles12
AT radouxf spo22equivariantquantizationsonthesupercircles12
first_indexed 2025-12-07T15:38:31Z
last_indexed 2025-12-07T15:38:31Z
_version_ 1850864473025282048