Integrability of Discrete Equations Modulo a Prime

We apply the ''almost good reduction'' (AGR) criterion, which has been introduced in our previous works, to several classes of discrete integrable equations. We verify our conjecture that AGR plays the same role for maps of the plane define over simple finite fields as the notion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2013
1. Verfasser: Kanki, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2013
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149351
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Integrability of Discrete Equations Modulo a Prime / M. Kanki // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149351
record_format dspace
spelling Kanki, M.
2019-02-21T07:08:28Z
2019-02-21T07:08:28Z
2013
Integrability of Discrete Equations Modulo a Prime / M. Kanki // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 18 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 37K10; 34M55; 37P25
DOI: http://dx.doi.org/10.3842/SIGMA.2013.056
https://nasplib.isofts.kiev.ua/handle/123456789/149351
We apply the ''almost good reduction'' (AGR) criterion, which has been introduced in our previous works, to several classes of discrete integrable equations. We verify our conjecture that AGR plays the same role for maps of the plane define over simple finite fields as the notion of the singularity confinement does. We first prove that q-discrete analogues of the Painlevé III and IV equations have AGR. We next prove that the Hietarinta-Viallet equation, a non-integrable chaotic system also has AGR.
The author wish to thank Professors Jun Mada, K.M. Tamizhmani, Tetsuji Tokihiro and Ralph Willox for insightful discussions and comments. He also thanks the detailed suggestions by the referees. This work is supported by Grant-in-Aid for JSPS Fellows (24-1379).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Integrability of Discrete Equations Modulo a Prime
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Integrability of Discrete Equations Modulo a Prime
spellingShingle Integrability of Discrete Equations Modulo a Prime
Kanki, M.
title_short Integrability of Discrete Equations Modulo a Prime
title_full Integrability of Discrete Equations Modulo a Prime
title_fullStr Integrability of Discrete Equations Modulo a Prime
title_full_unstemmed Integrability of Discrete Equations Modulo a Prime
title_sort integrability of discrete equations modulo a prime
author Kanki, M.
author_facet Kanki, M.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We apply the ''almost good reduction'' (AGR) criterion, which has been introduced in our previous works, to several classes of discrete integrable equations. We verify our conjecture that AGR plays the same role for maps of the plane define over simple finite fields as the notion of the singularity confinement does. We first prove that q-discrete analogues of the Painlevé III and IV equations have AGR. We next prove that the Hietarinta-Viallet equation, a non-integrable chaotic system also has AGR.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149351
citation_txt Integrability of Discrete Equations Modulo a Prime / M. Kanki // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT kankim integrabilityofdiscreteequationsmoduloaprime
first_indexed 2025-12-07T21:15:05Z
last_indexed 2025-12-07T21:15:05Z
_version_ 1850885648281501696