The Algebra of a q-Analogue of Multiple Harmonic Series

We introduce an algebra which describes the multiplication structure of a family of q-series containing a q-analogue of multiple zeta values. The double shuffle relations are formulated in our framework. They contain a q-analogue of Hoffman's identity for multiple zeta values. We also discuss t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2013
1. Verfasser: Takeyama, Y.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2013
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149353
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Algebra of a q-Analogue of Multiple Harmonic Series / Y. Takeyama // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149353
record_format dspace
spelling Takeyama, Y.
2019-02-21T07:09:22Z
2019-02-21T07:09:22Z
2013
The Algebra of a q-Analogue of Multiple Harmonic Series / Y. Takeyama // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 11 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 11M32; 33E20
DOI: http://dx.doi.org/10.3842/SIGMA.2013.061
https://nasplib.isofts.kiev.ua/handle/123456789/149353
We introduce an algebra which describes the multiplication structure of a family of q-series containing a q-analogue of multiple zeta values. The double shuffle relations are formulated in our framework. They contain a q-analogue of Hoffman's identity for multiple zeta values. We also discuss the dimension of the space spanned by the linear relations realized in our algebra.
This paper is a contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa. The full collection is available at http://www.emis.de/journals/SIGMA/InfiniteAnalysis2013.html. The research of the author is supported by Grant-in-Aid for Young Scientists (B) No. 23740119.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
The Algebra of a q-Analogue of Multiple Harmonic Series
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Algebra of a q-Analogue of Multiple Harmonic Series
spellingShingle The Algebra of a q-Analogue of Multiple Harmonic Series
Takeyama, Y.
title_short The Algebra of a q-Analogue of Multiple Harmonic Series
title_full The Algebra of a q-Analogue of Multiple Harmonic Series
title_fullStr The Algebra of a q-Analogue of Multiple Harmonic Series
title_full_unstemmed The Algebra of a q-Analogue of Multiple Harmonic Series
title_sort algebra of a q-analogue of multiple harmonic series
author Takeyama, Y.
author_facet Takeyama, Y.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We introduce an algebra which describes the multiplication structure of a family of q-series containing a q-analogue of multiple zeta values. The double shuffle relations are formulated in our framework. They contain a q-analogue of Hoffman's identity for multiple zeta values. We also discuss the dimension of the space spanned by the linear relations realized in our algebra.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149353
citation_txt The Algebra of a q-Analogue of Multiple Harmonic Series / Y. Takeyama // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT takeyamay thealgebraofaqanalogueofmultipleharmonicseries
AT takeyamay algebraofaqanalogueofmultipleharmonicseries
first_indexed 2025-12-07T16:34:21Z
last_indexed 2025-12-07T16:34:21Z
_version_ 1850867985708744704