Period Matrices of Real Riemann Surfaces and Fundamental Domains

For some positive integers g and n we consider a subgroup Gg,n of the 2g-dimensional modular group keeping invariant a certain locus Wg,n in the Siegel upper half plane of degree g. We address the problem of describing a fundamental domain for the modular action of the subgroup on Wg,n. Our motivati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2013
1. Verfasser: Giavedoni, P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2013
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149354
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Period Matrices of Real Riemann Surfaces and Fundamental Domains / P. Giavedoni // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149354
record_format dspace
spelling Giavedoni, P.
2019-02-21T07:09:45Z
2019-02-21T07:09:45Z
2013
Period Matrices of Real Riemann Surfaces and Fundamental Domains / P. Giavedoni // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 22 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 14P05; 57S30; 11F46
DOI: http://dx.doi.org/10.3842/SIGMA.2013.062
https://nasplib.isofts.kiev.ua/handle/123456789/149354
For some positive integers g and n we consider a subgroup Gg,n of the 2g-dimensional modular group keeping invariant a certain locus Wg,n in the Siegel upper half plane of degree g. We address the problem of describing a fundamental domain for the modular action of the subgroup on Wg,n. Our motivation comes from geometry: g and n represent the genus and the number of ovals of a generic real Riemann surface of separated type; the locus Wg,n contains the corresponding period matrix computed with respect to some specific basis in the homology. In this paper we formulate a general procedure to solve the problem when g is even and n equals one. For g equal to two or four the explicit calculations are worked out in full detail.
Research supported by SISSA under the PhD program in Mathematics and by the Austrian Science Fund (FWF) under Grant No. Y330. The author wishes to thank Professor Boris Dubrovin for kindly supervising this work and Professor Tamara Grava for valuable discussions. He also thanks the anonymous referees for significantly contributing to improve this article.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Period Matrices of Real Riemann Surfaces and Fundamental Domains
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Period Matrices of Real Riemann Surfaces and Fundamental Domains
spellingShingle Period Matrices of Real Riemann Surfaces and Fundamental Domains
Giavedoni, P.
title_short Period Matrices of Real Riemann Surfaces and Fundamental Domains
title_full Period Matrices of Real Riemann Surfaces and Fundamental Domains
title_fullStr Period Matrices of Real Riemann Surfaces and Fundamental Domains
title_full_unstemmed Period Matrices of Real Riemann Surfaces and Fundamental Domains
title_sort period matrices of real riemann surfaces and fundamental domains
author Giavedoni, P.
author_facet Giavedoni, P.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description For some positive integers g and n we consider a subgroup Gg,n of the 2g-dimensional modular group keeping invariant a certain locus Wg,n in the Siegel upper half plane of degree g. We address the problem of describing a fundamental domain for the modular action of the subgroup on Wg,n. Our motivation comes from geometry: g and n represent the genus and the number of ovals of a generic real Riemann surface of separated type; the locus Wg,n contains the corresponding period matrix computed with respect to some specific basis in the homology. In this paper we formulate a general procedure to solve the problem when g is even and n equals one. For g equal to two or four the explicit calculations are worked out in full detail.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149354
citation_txt Period Matrices of Real Riemann Surfaces and Fundamental Domains / P. Giavedoni // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 22 назв. — англ.
work_keys_str_mv AT giavedonip periodmatricesofrealriemannsurfacesandfundamentaldomains
first_indexed 2025-12-07T19:37:03Z
last_indexed 2025-12-07T19:37:03Z
_version_ 1850879480373968897