Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System
In this paper, we introduce a new differential-difference operator Tξ (ξ∈RN) by using projections associated to orthogonal subsystems in root systems. Similarly to Dunkl theory, we show that these operators commute and we construct an intertwining operator between Tξ and the directional derivative ∂...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2013 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2013
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/149356 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System / F. Bouzeffour // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | In this paper, we introduce a new differential-difference operator Tξ (ξ∈RN) by using projections associated to orthogonal subsystems in root systems. Similarly to Dunkl theory, we show that these operators commute and we construct an intertwining operator between Tξ and the directional derivative ∂ξ. In the case of one variable, we prove that the Kummer functions are eigenfunctions of this operator.
|
|---|---|
| ISSN: | 1815-0659 |