Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System
In this paper, we introduce a new differential-difference operator Tξ (ξ∈RN) by using projections associated to orthogonal subsystems in root systems. Similarly to Dunkl theory, we show that these operators commute and we construct an intertwining operator between Tξ and the directional derivative ∂...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2013 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2013
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/149356 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System / F. Bouzeffour // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-149356 |
|---|---|
| record_format |
dspace |
| spelling |
Bouzeffour, F. 2019-02-21T07:10:44Z 2019-02-21T07:10:44Z 2013 Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System / F. Bouzeffour // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 15 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33C15; 33D52; 35A22 DOI: http://dx.doi.org/10.3842/SIGMA.2013.064 https://nasplib.isofts.kiev.ua/handle/123456789/149356 In this paper, we introduce a new differential-difference operator Tξ (ξ∈RN) by using projections associated to orthogonal subsystems in root systems. Similarly to Dunkl theory, we show that these operators commute and we construct an intertwining operator between Tξ and the directional derivative ∂ξ. In the case of one variable, we prove that the Kummer functions are eigenfunctions of this operator. This research is supported by NPST Program of King Saud University, project number 10- MAT1293-02. I would like to thank the editor and the anonymous referees for their helpful comments and remarks. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System |
| spellingShingle |
Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System Bouzeffour, F. |
| title_short |
Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System |
| title_full |
Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System |
| title_fullStr |
Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System |
| title_full_unstemmed |
Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System |
| title_sort |
dunkl-type operators with projection terms associated to orthogonal subsystems in root system |
| author |
Bouzeffour, F. |
| author_facet |
Bouzeffour, F. |
| publishDate |
2013 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
In this paper, we introduce a new differential-difference operator Tξ (ξ∈RN) by using projections associated to orthogonal subsystems in root systems. Similarly to Dunkl theory, we show that these operators commute and we construct an intertwining operator between Tξ and the directional derivative ∂ξ. In the case of one variable, we prove that the Kummer functions are eigenfunctions of this operator.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/149356 |
| citation_txt |
Dunkl-Type Operators with Projection Terms Associated to Orthogonal Subsystems in Root System / F. Bouzeffour // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 15 назв. — англ. |
| work_keys_str_mv |
AT bouzeffourf dunkltypeoperatorswithprojectiontermsassociatedtoorthogonalsubsystemsinrootsystem |
| first_indexed |
2025-12-07T18:25:26Z |
| last_indexed |
2025-12-07T18:25:26Z |
| _version_ |
1850874975374802944 |