Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation

We consider the symmetry properties of an integro-differential multidimensional Gross-Pitaevskii equation with a nonlocal nonlinear (cubic) term in the context of symmetry analysis using the formalism of semiclassical asymptotics. This yields a semiclassically reduced nonlocal Gross-Pitaevskii equat...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2013
Автори: Lisok, A.L., Shapovalov, A.V., Trifonov, A.Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149358
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation / A.L. Lisok, A.V. Shapovalov, A.Y. Trifonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 34 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149358
record_format dspace
spelling Lisok, A.L.
Shapovalov, A.V.
Trifonov, A.Y.
2019-02-21T07:12:56Z
2019-02-21T07:12:56Z
2013
Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation / A.L. Lisok, A.V. Shapovalov, A.Y. Trifonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 34 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 35Q55; 45K05; 76M60; 81Q20
DOI: http://dx.doi.org/10.3842/SIGMA.2013.066
https://nasplib.isofts.kiev.ua/handle/123456789/149358
We consider the symmetry properties of an integro-differential multidimensional Gross-Pitaevskii equation with a nonlocal nonlinear (cubic) term in the context of symmetry analysis using the formalism of semiclassical asymptotics. This yields a semiclassically reduced nonlocal Gross-Pitaevskii equation, which can be treated as a nearly linear equation, to determine the principal term of the semiclassical asymptotic solution. Our main result is an approach which allows one to construct a class of symmetry operators for the reduced Gross-Pitaevskii equation. These symmetry operators are determined by linear relations including intertwining operators and additional algebraic conditions. The basic ideas are illustrated with a 1D reduced Gross-Pitaevskii equation. The symmetry operators are found explicitly, and the corresponding families of exact solutions are obtained.
We would like to thank the anonymous referees who gave a relevant contribution to improve the paper. The work was supported in part by the Russian Federation programs “Kadry” (contract No. 16.740.11.0469) and “Nauka” (contract No. 1.604.2011) and by Tomsk State University project No. 2.3684.2011.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation
spellingShingle Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation
Lisok, A.L.
Shapovalov, A.V.
Trifonov, A.Y.
title_short Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation
title_full Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation
title_fullStr Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation
title_full_unstemmed Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation
title_sort symmetry and intertwining operators for the nonlocal gross-pitaevskii equation
author Lisok, A.L.
Shapovalov, A.V.
Trifonov, A.Y.
author_facet Lisok, A.L.
Shapovalov, A.V.
Trifonov, A.Y.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We consider the symmetry properties of an integro-differential multidimensional Gross-Pitaevskii equation with a nonlocal nonlinear (cubic) term in the context of symmetry analysis using the formalism of semiclassical asymptotics. This yields a semiclassically reduced nonlocal Gross-Pitaevskii equation, which can be treated as a nearly linear equation, to determine the principal term of the semiclassical asymptotic solution. Our main result is an approach which allows one to construct a class of symmetry operators for the reduced Gross-Pitaevskii equation. These symmetry operators are determined by linear relations including intertwining operators and additional algebraic conditions. The basic ideas are illustrated with a 1D reduced Gross-Pitaevskii equation. The symmetry operators are found explicitly, and the corresponding families of exact solutions are obtained.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149358
citation_txt Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation / A.L. Lisok, A.V. Shapovalov, A.Y. Trifonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 34 назв. — англ.
work_keys_str_mv AT lisokal symmetryandintertwiningoperatorsforthenonlocalgrosspitaevskiiequation
AT shapovalovav symmetryandintertwiningoperatorsforthenonlocalgrosspitaevskiiequation
AT trifonovay symmetryandintertwiningoperatorsforthenonlocalgrosspitaevskiiequation
first_indexed 2025-12-07T20:07:09Z
last_indexed 2025-12-07T20:07:09Z
_version_ 1850881374797430784