Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz

We propose a generalization of the algebraic Bethe ansatz to obtain the eigenvectors of the Heisenberg spin chain with general boundaries associated to the eigenvalues and the Bethe equations found recently by Cao et al. The ansatz takes the usual form of a product of operators acting on a particula...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2013
Автори: Belliard, S., Crampé, N.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149364
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz / S. Belliard, N. Crampé // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 39 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149364
record_format dspace
spelling Belliard, S.
Crampé, N.
2019-02-21T07:21:35Z
2019-02-21T07:21:35Z
2013
Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz / S. Belliard, N. Crampé // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 39 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 82B23; 81R12
DOI: http://dx.doi.org/10.3842/SIGMA.2013.072
https://nasplib.isofts.kiev.ua/handle/123456789/149364
We propose a generalization of the algebraic Bethe ansatz to obtain the eigenvectors of the Heisenberg spin chain with general boundaries associated to the eigenvalues and the Bethe equations found recently by Cao et al. The ansatz takes the usual form of a product of operators acting on a particular vector except that the number of operators is equal to the length of the chain. We prove this result for the chains with small length. We obtain also an off-shell equation (i.e. satisfied without the Bethe equations) formally similar to the ones obtained in the periodic case or with diagonal boundaries.
We would like to thank P. Baseilhac, V. Caudrelier, R.A. Pimenta and E. Ragoucy for discussions.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz
spellingShingle Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz
Belliard, S.
Crampé, N.
title_short Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz
title_full Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz
title_fullStr Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz
title_full_unstemmed Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz
title_sort heisenberg xxx model with general boundaries: eigenvectors from algebraic bethe ansatz
author Belliard, S.
Crampé, N.
author_facet Belliard, S.
Crampé, N.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We propose a generalization of the algebraic Bethe ansatz to obtain the eigenvectors of the Heisenberg spin chain with general boundaries associated to the eigenvalues and the Bethe equations found recently by Cao et al. The ansatz takes the usual form of a product of operators acting on a particular vector except that the number of operators is equal to the length of the chain. We prove this result for the chains with small length. We obtain also an off-shell equation (i.e. satisfied without the Bethe equations) formally similar to the ones obtained in the periodic case or with diagonal boundaries.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149364
citation_txt Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz / S. Belliard, N. Crampé // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 39 назв. — англ.
work_keys_str_mv AT belliards heisenbergxxxmodelwithgeneralboundarieseigenvectorsfromalgebraicbetheansatz
AT crampen heisenbergxxxmodelwithgeneralboundarieseigenvectorsfromalgebraicbetheansatz
first_indexed 2025-12-07T15:22:52Z
last_indexed 2025-12-07T15:22:52Z
_version_ 1850863488667222016