Direct Connection between the RII Chain and the Nonautonomous Discrete Modified KdV Lattice

The spectral transformation technique for symmetric RII polynomials is developed. Use of this technique reveals that the nonautonomous discrete modified KdV (nd-mKdV) lattice is directly connected with the RII chain. Hankel determinant solutions to the semi-infinite nd-mKdV lattice are also presente...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2013
Main Authors: Maeda, K., Tsujimoto, S.
Format: Article
Language:English
Published: Інститут математики НАН України 2013
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/149365
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Direct Connection between the RII Chain and the Nonautonomous Discrete Modified KdV Lattice / K. Maeda, S. Tsujimoto // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 38 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149365
record_format dspace
spelling Maeda, K.
Tsujimoto, S.
2019-02-21T07:21:56Z
2019-02-21T07:21:56Z
2013
Direct Connection between the RII Chain and the Nonautonomous Discrete Modified KdV Lattice / K. Maeda, S. Tsujimoto // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 38 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 37K35; 37K60; 42C05
DOI: http://dx.doi.org/10.3842/SIGMA.2013.073
https://nasplib.isofts.kiev.ua/handle/123456789/149365
The spectral transformation technique for symmetric RII polynomials is developed. Use of this technique reveals that the nonautonomous discrete modified KdV (nd-mKdV) lattice is directly connected with the RII chain. Hankel determinant solutions to the semi-infinite nd-mKdV lattice are also presented.
The authors thank Professor Kenji Kajiwara for fruitful comments and the anonymous referees for their valuable suggestions. This work was supported by JSPS KAKENHI Grant Numbers 11J04105 and 25400110.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Direct Connection between the RII Chain and the Nonautonomous Discrete Modified KdV Lattice
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Direct Connection between the RII Chain and the Nonautonomous Discrete Modified KdV Lattice
spellingShingle Direct Connection between the RII Chain and the Nonautonomous Discrete Modified KdV Lattice
Maeda, K.
Tsujimoto, S.
title_short Direct Connection between the RII Chain and the Nonautonomous Discrete Modified KdV Lattice
title_full Direct Connection between the RII Chain and the Nonautonomous Discrete Modified KdV Lattice
title_fullStr Direct Connection between the RII Chain and the Nonautonomous Discrete Modified KdV Lattice
title_full_unstemmed Direct Connection between the RII Chain and the Nonautonomous Discrete Modified KdV Lattice
title_sort direct connection between the rii chain and the nonautonomous discrete modified kdv lattice
author Maeda, K.
Tsujimoto, S.
author_facet Maeda, K.
Tsujimoto, S.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The spectral transformation technique for symmetric RII polynomials is developed. Use of this technique reveals that the nonautonomous discrete modified KdV (nd-mKdV) lattice is directly connected with the RII chain. Hankel determinant solutions to the semi-infinite nd-mKdV lattice are also presented.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149365
citation_txt Direct Connection between the RII Chain and the Nonautonomous Discrete Modified KdV Lattice / K. Maeda, S. Tsujimoto // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 38 назв. — англ.
work_keys_str_mv AT maedak directconnectionbetweentheriichainandthenonautonomousdiscretemodifiedkdvlattice
AT tsujimotos directconnectionbetweentheriichainandthenonautonomousdiscretemodifiedkdvlattice
first_indexed 2025-12-07T16:52:12Z
last_indexed 2025-12-07T16:52:12Z
_version_ 1850869109282045952