The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds

A linear connection on a Lie algebroid is called a Cartan connection if it is suitably compatible with the Lie algebroid structure. Here we show that a smooth connected manifold M is locally homogeneous – i.e., admits an atlas of charts modeled on some homogeneous space G/H – if and only if there ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2013
1. Verfasser: Blaom, A.D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2013
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149366
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds / A.D. Blaom // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:A linear connection on a Lie algebroid is called a Cartan connection if it is suitably compatible with the Lie algebroid structure. Here we show that a smooth connected manifold M is locally homogeneous – i.e., admits an atlas of charts modeled on some homogeneous space G/H – if and only if there exists a transitive Lie algebroid over M admitting a flat Cartan connection that is 'geometrically closed'. It is shown how the torsion and monodromy of the connection determine the particular form of G/H. Under an additional completeness hypothesis, local homogeneity becomes global homogeneity, up to cover.
ISSN:1815-0659