The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds

A linear connection on a Lie algebroid is called a Cartan connection if it is suitably compatible with the Lie algebroid structure. Here we show that a smooth connected manifold M is locally homogeneous – i.e., admits an atlas of charts modeled on some homogeneous space G/H – if and only if there ex...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2013
Автор: Blaom, A.D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149366
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds / A.D. Blaom // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149366
record_format dspace
spelling Blaom, A.D.
2019-02-21T07:22:22Z
2019-02-21T07:22:22Z
2013
The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds / A.D. Blaom // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 17 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53C30; 53C15; 53C07
DOI: http://dx.doi.org/10.3842/SIGMA.2013.074
https://nasplib.isofts.kiev.ua/handle/123456789/149366
A linear connection on a Lie algebroid is called a Cartan connection if it is suitably compatible with the Lie algebroid structure. Here we show that a smooth connected manifold M is locally homogeneous – i.e., admits an atlas of charts modeled on some homogeneous space G/H – if and only if there exists a transitive Lie algebroid over M admitting a flat Cartan connection that is 'geometrically closed'. It is shown how the torsion and monodromy of the connection determine the particular form of G/H. Under an additional completeness hypothesis, local homogeneity becomes global homogeneity, up to cover.
The author acknowledges many helpful discussions with Erc¨ument Orta¸cgil.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds
spellingShingle The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds
Blaom, A.D.
title_short The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds
title_full The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds
title_fullStr The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds
title_full_unstemmed The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds
title_sort infinitesimalization and reconstruction of locally homogeneous manifolds
author Blaom, A.D.
author_facet Blaom, A.D.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description A linear connection on a Lie algebroid is called a Cartan connection if it is suitably compatible with the Lie algebroid structure. Here we show that a smooth connected manifold M is locally homogeneous – i.e., admits an atlas of charts modeled on some homogeneous space G/H – if and only if there exists a transitive Lie algebroid over M admitting a flat Cartan connection that is 'geometrically closed'. It is shown how the torsion and monodromy of the connection determine the particular form of G/H. Under an additional completeness hypothesis, local homogeneity becomes global homogeneity, up to cover.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149366
citation_txt The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds / A.D. Blaom // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT blaomad theinfinitesimalizationandreconstructionoflocallyhomogeneousmanifolds
AT blaomad infinitesimalizationandreconstructionoflocallyhomogeneousmanifolds
first_indexed 2025-12-07T18:26:29Z
last_indexed 2025-12-07T18:26:29Z
_version_ 1850875041400487936