The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds
A linear connection on a Lie algebroid is called a Cartan connection if it is suitably compatible with the Lie algebroid structure. Here we show that a smooth connected manifold M is locally homogeneous – i.e., admits an atlas of charts modeled on some homogeneous space G/H – if and only if there ex...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2013 |
| 1. Verfasser: | Blaom, A.D. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2013
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/149366 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds / A.D. Blaom // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 17 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds
von: Grochowski, M., et al.
Veröffentlicht: (2015) -
Essential Parabolic Structures and Their Infinitesimal Automorphisms
von: Alt, J.
Veröffentlicht: (2011) -
Compact Riemannian Manifolds with Homogeneous Geodesics
von: Alekseevsky, D.V., et al.
Veröffentlicht: (2009) -
Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds
von: Bromberg, S., et al.
Veröffentlicht: (2008) -
On local properties of one class of mappings on Riemannian manifolds
von: D. P. Iljutko, et al.
Veröffentlicht: (2015)