Genotype dynamic for agent neuroevolution in artificial life model

Cooperation behavior is one of the most used and spread Multi-agent system feature. In some cases emergence of this behaviour can be characterized by division of population on co-evolving subpopulations [1], [2]. Group interaction can take not only antagonistic conflict form but also genetic drift t...

Full description

Saved in:
Bibliographic Details
Published in:Системні дослідження та інформаційні технології
Date:2017
Main Authors: Zavertanyy, V., Makarenko, A.
Format: Article
Language:English
Published: Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України 2017
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/151065
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Genotype dynamic for agent neuroevolution in artificial life model / V. Zavertanyy, A. Makarenko // Системні дослідження та інформаційні технології. — 2017. — № 1. — С. 75-87. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-151065
record_format dspace
spelling Zavertanyy, V.
Makarenko, A.
2019-04-23T19:23:56Z
2019-04-23T19:23:56Z
2017
Genotype dynamic for agent neuroevolution in artificial life model / V. Zavertanyy, A. Makarenko // Системні дослідження та інформаційні технології. — 2017. — № 1. — С. 75-87. — Бібліогр.: 22 назв. — англ.
1681–6048
DOI: https://doi.org/10.20535/SRIT.2308-8893.2017.4.06
https://nasplib.isofts.kiev.ua/handle/123456789/151065
518.58:519.2:504
Cooperation behavior is one of the most used and spread Multi-agent system feature. In some cases emergence of this behaviour can be characterized by division of population on co-evolving subpopulations [1], [2]. Group interaction can take not only antagonistic conflict form but also genetic drift that results with strategies competition and assimilation [3]. In this work we demonstrate different relation between agent grouping and they behavior strategies. We use approach proposed in work [2] methodology of agent genotype dynamic tracking, due to this approach the evolving population can be presented in genotype space as a cloud of points where each point corresponds to one individual. In current work consider the movement of population centroid – the center of the genotype cloud. Analysis of such trajectories can shad the light on the regimes of population existence and genesis.
Кооперативна поведінка є однією з найбільш часто використовуваних та поширених рис для багатоагентних систем. У деяких випадках поява такої поведінки пов’язана із поділом населення на співіснуючі субпопуляції [1, 2]. Групова взаємодія може набувати не лише форми антагоністичного конфлікту, але й зумовлюватися генетичним дрейфом, який приводить до конкуренції поведінкових стратегій та можливої асиміляції [3]. Продемонстровано різні види залежностей між групами агентів та їх поведінковими стратегіями. Використано методологію спостереження за динамікою агентного генотипу [2], відповідно до якої популяція у просторі генотипів може мати вигляд хмари точок, кожна точка якої відповідає одній особині. Розглянуто динаміку центроїда населення — центра хмари генотипу. Аналіз таких траєкторій може сприяти дослідженню різних режимів існування популяції та їх зародження.
Кооперативное поведение является одной из наиболее часто используемых и распространенных черт для многоагентных систем. В некоторых случаях появление такого поведения связано с разделением населения на сосуществующие субпопуляции [1, 2]. Групповое взаимодействие может принимать не только форму антагонистического конфликта, но и обуслoвливаться генетическим дрейфом, приводящим к конкуренции поведенческих стратегий и возможной ассимиляции [3]. Продемонстрированы различные виды зависимостей между группами агентов и их поведенческими стратегиями. Использована методология наблюдения за динамикой агентного генотипа [2], согласно которой популяция может быть представлена в пространстве генотипов в виде облака точек, где каждая точка соответствует одной особи. Рассмотрена динамика центроида популяции — центр облака генотипа. Анализ таких траекторий может помочь исследованию различных режимов существования популяции и их зарождения.
en
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
Системні дослідження та інформаційні технології
Математичні методи, моделі, проблеми і технології дослідження складних систем
Genotype dynamic for agent neuroevolution in artificial life model
Динаміка генотипу в нейроеволюції агентів у моделях штучного життя
Динамика генотипа в нейроэволюции агентов в моделях искусственной жизни
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Genotype dynamic for agent neuroevolution in artificial life model
spellingShingle Genotype dynamic for agent neuroevolution in artificial life model
Zavertanyy, V.
Makarenko, A.
Математичні методи, моделі, проблеми і технології дослідження складних систем
title_short Genotype dynamic for agent neuroevolution in artificial life model
title_full Genotype dynamic for agent neuroevolution in artificial life model
title_fullStr Genotype dynamic for agent neuroevolution in artificial life model
title_full_unstemmed Genotype dynamic for agent neuroevolution in artificial life model
title_sort genotype dynamic for agent neuroevolution in artificial life model
author Zavertanyy, V.
Makarenko, A.
author_facet Zavertanyy, V.
Makarenko, A.
topic Математичні методи, моделі, проблеми і технології дослідження складних систем
topic_facet Математичні методи, моделі, проблеми і технології дослідження складних систем
publishDate 2017
language English
container_title Системні дослідження та інформаційні технології
publisher Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
format Article
title_alt Динаміка генотипу в нейроеволюції агентів у моделях штучного життя
Динамика генотипа в нейроэволюции агентов в моделях искусственной жизни
description Cooperation behavior is one of the most used and spread Multi-agent system feature. In some cases emergence of this behaviour can be characterized by division of population on co-evolving subpopulations [1], [2]. Group interaction can take not only antagonistic conflict form but also genetic drift that results with strategies competition and assimilation [3]. In this work we demonstrate different relation between agent grouping and they behavior strategies. We use approach proposed in work [2] methodology of agent genotype dynamic tracking, due to this approach the evolving population can be presented in genotype space as a cloud of points where each point corresponds to one individual. In current work consider the movement of population centroid – the center of the genotype cloud. Analysis of such trajectories can shad the light on the regimes of population existence and genesis. Кооперативна поведінка є однією з найбільш часто використовуваних та поширених рис для багатоагентних систем. У деяких випадках поява такої поведінки пов’язана із поділом населення на співіснуючі субпопуляції [1, 2]. Групова взаємодія може набувати не лише форми антагоністичного конфлікту, але й зумовлюватися генетичним дрейфом, який приводить до конкуренції поведінкових стратегій та можливої асиміляції [3]. Продемонстровано різні види залежностей між групами агентів та їх поведінковими стратегіями. Використано методологію спостереження за динамікою агентного генотипу [2], відповідно до якої популяція у просторі генотипів може мати вигляд хмари точок, кожна точка якої відповідає одній особині. Розглянуто динаміку центроїда населення — центра хмари генотипу. Аналіз таких траєкторій може сприяти дослідженню різних режимів існування популяції та їх зародження. Кооперативное поведение является одной из наиболее часто используемых и распространенных черт для многоагентных систем. В некоторых случаях появление такого поведения связано с разделением населения на сосуществующие субпопуляции [1, 2]. Групповое взаимодействие может принимать не только форму антагонистического конфликта, но и обуслoвливаться генетическим дрейфом, приводящим к конкуренции поведенческих стратегий и возможной ассимиляции [3]. Продемонстрированы различные виды зависимостей между группами агентов и их поведенческими стратегиями. Использована методология наблюдения за динамикой агентного генотипа [2], согласно которой популяция может быть представлена в пространстве генотипов в виде облака точек, где каждая точка соответствует одной особи. Рассмотрена динамика центроида популяции — центр облака генотипа. Анализ таких траекторий может помочь исследованию различных режимов существования популяции и их зарождения.
issn 1681–6048
url https://nasplib.isofts.kiev.ua/handle/123456789/151065
citation_txt Genotype dynamic for agent neuroevolution in artificial life model / V. Zavertanyy, A. Makarenko // Системні дослідження та інформаційні технології. — 2017. — № 1. — С. 75-87. — Бібліогр.: 22 назв. — англ.
work_keys_str_mv AT zavertanyyv genotypedynamicforagentneuroevolutioninartificiallifemodel
AT makarenkoa genotypedynamicforagentneuroevolutioninartificiallifemodel
AT zavertanyyv dinamíkagenotipuvneiroevolûcííagentívumodelâhštučnogožittâ
AT makarenkoa dinamíkagenotipuvneiroevolûcííagentívumodelâhštučnogožittâ
AT zavertanyyv dinamikagenotipavneiroévolûciiagentovvmodelâhiskusstvennoižizni
AT makarenkoa dinamikagenotipavneiroévolûciiagentovvmodelâhiskusstvennoižizni
first_indexed 2025-12-07T16:53:15Z
last_indexed 2025-12-07T16:53:15Z
_version_ 1850869175373791232