Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo

Development of the non-linear kinetic mean-field model suggested by George Martin in 1990 is discussed. Its steady-state limit is shown to coincide with Khachaturyan’s model. It is proved rigorously that Martin’s model and its 3DD version always provide decrease of free energy and are unable to mode...

Full description

Saved in:
Bibliographic Details
Published in:Металлофизика и новейшие технологии
Date:2018
Main Authors: Gusak, A., Zaporozhets, T.
Format: Article
Language:English
Published: Інститут металофізики ім. Г.В. Курдюмова НАН України 2018
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/151873
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo / A. Gusak, T. Zaporozhets // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 11. — С. 1415-1435. — Бібліогр.: 26 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-151873
record_format dspace
spelling Gusak, A.
Zaporozhets, T.
2019-05-25T12:12:23Z
2019-05-25T12:12:23Z
2018
Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo / A. Gusak, T. Zaporozhets // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 11. — С. 1415-1435. — Бібліогр.: 26 назв. — англ.
1024-1809
DOI: 10.15407/mfint.40.11.1415
PACS: 05.40.Ca, 61.72.Bb, 64.60.Cn, 64.60.De, 66.30.Ny, 66.30.Pa, 81.30.Hd
https://nasplib.isofts.kiev.ua/handle/123456789/151873
Development of the non-linear kinetic mean-field model suggested by George Martin in 1990 is discussed. Its steady-state limit is shown to coincide with Khachaturyan’s model. It is proved rigorously that Martin’s model and its 3DD version always provide decrease of free energy and are unable to model any overcoming of free-energy barrier, including nucleation. To enable nucleation processes within the mean-field models, the introduction of noise is necessary. Contrary to common way of noise introduction (noise of concentration), we introduce the noise of jump frequencies as a basic reason of fluctuations. The new method is called as Stochastic Kinetic Mean Field (SKMF). In this paper, we investigate and compare the dispersion and spatial correlations of concentration fluctuations by three methods—direct Monte Carlo simulation, numeric simulation by SKMF method, and analytic approximation within the scope of SKMF. Comparison confirms the correspondence of frequency noise to the averaging over finite number of Monte Carlo runs (over finite number of copies of the canonical ensemble).
Предложено развитие нелинейной кинетической среднеполевой модели Жоржа Мартана 1990 года. Показано, что в приближении квазистационарности она соответствует модели Хачатуряна. Строго доказано, что модель Мартана и её 3DD-версия всегда обеспечивают уменьшение свободной энергии и не позволяют моделировать преодоление барьера свободной энергии вместе с зародышеобразованием. Для реализации процессов зародышеобразования в среднеполевых моделях необходимо вводить шум. В отличие от распространённого способа введения шума (как шума концентрации), мы вводим шум частоты обменов местами посредством скачков как основную причину флуктуаций. Новый метод называется SKMF (Stochastic Kinetic Mean Field). В этой работе исследуются и сравниваются дисперсия и пространственные корреляции флюктуаций концентрации, полученные с помощью трёх методов — прямого моделирования методом Монте-Карло, численного моделирования по методу SKMF, аналитического приближения в рамках SKMF. Сравнение этих методов подтверждает соответствие определённой амплитуды шума частоты усреднению по соответствующему конечному количеству Монте-Карло-запусков (по конечному числу копий канонического ансамбля).
Запропоновано розвиток нелінійного кінетичного середньопольового моделю Жоржа Мартана 1990 року. Показано, що у наближенні квазистаціонарности він відповідає Хачатуряновому моделю. Строго доведено, що Мартанів модель та його 3DD-версія завжди забезпечують зменшення вільної енергії та не уможливлюють моделювати подолання бар’єру вільної енергії разом з зародкуванням. Для реалізації процесів зародкування в середньо-польових моделях необхідно вводити шум. На відміну від поширеного способу введення шуму (як шуму концентрації), ми вводимо шум частоти обмінів місцями через стрибки як основну причину флюктуацій. Нова метода називається SKMF (Stochastic Kinetic Mean Field). У цій роботі досліджуються та порівнюються дисперсія та просторові кореляції флюктуацій концентрації за допомогою трьох метод — прямого моделювання за методою Монте-Карло, чисельного моделювання за методою SKMF й аналітичного наближення в рамках SKMF. Порівняння цих метод підтверджує відповідність певної амплітуди шуму частот усередненню по відповідній скінченній кількості Монте-Карло-запусків (по скінченній кількості копій канонічного ансамблю).
en
Інститут металофізики ім. Г.В. Курдюмова НАН України
Металлофизика и новейшие технологии
Фазовые превращения
Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo
Снова о кинетической среднеполевой модели Мартана: частотно-шумовой подход в сравнении с методом Монте-Карло
Знову про Мартанів кінетичний середньопольовий модель: частотно-шумовий підхід у порівнянні з методом Монте-Карло
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo
spellingShingle Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo
Gusak, A.
Zaporozhets, T.
Фазовые превращения
title_short Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo
title_full Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo
title_fullStr Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo
title_full_unstemmed Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo
title_sort martin’s kinetic mean-field model revisited—frequency noise approach versus monte carlo
author Gusak, A.
Zaporozhets, T.
author_facet Gusak, A.
Zaporozhets, T.
topic Фазовые превращения
topic_facet Фазовые превращения
publishDate 2018
language English
container_title Металлофизика и новейшие технологии
publisher Інститут металофізики ім. Г.В. Курдюмова НАН України
format Article
title_alt Снова о кинетической среднеполевой модели Мартана: частотно-шумовой подход в сравнении с методом Монте-Карло
Знову про Мартанів кінетичний середньопольовий модель: частотно-шумовий підхід у порівнянні з методом Монте-Карло
description Development of the non-linear kinetic mean-field model suggested by George Martin in 1990 is discussed. Its steady-state limit is shown to coincide with Khachaturyan’s model. It is proved rigorously that Martin’s model and its 3DD version always provide decrease of free energy and are unable to model any overcoming of free-energy barrier, including nucleation. To enable nucleation processes within the mean-field models, the introduction of noise is necessary. Contrary to common way of noise introduction (noise of concentration), we introduce the noise of jump frequencies as a basic reason of fluctuations. The new method is called as Stochastic Kinetic Mean Field (SKMF). In this paper, we investigate and compare the dispersion and spatial correlations of concentration fluctuations by three methods—direct Monte Carlo simulation, numeric simulation by SKMF method, and analytic approximation within the scope of SKMF. Comparison confirms the correspondence of frequency noise to the averaging over finite number of Monte Carlo runs (over finite number of copies of the canonical ensemble). Предложено развитие нелинейной кинетической среднеполевой модели Жоржа Мартана 1990 года. Показано, что в приближении квазистационарности она соответствует модели Хачатуряна. Строго доказано, что модель Мартана и её 3DD-версия всегда обеспечивают уменьшение свободной энергии и не позволяют моделировать преодоление барьера свободной энергии вместе с зародышеобразованием. Для реализации процессов зародышеобразования в среднеполевых моделях необходимо вводить шум. В отличие от распространённого способа введения шума (как шума концентрации), мы вводим шум частоты обменов местами посредством скачков как основную причину флуктуаций. Новый метод называется SKMF (Stochastic Kinetic Mean Field). В этой работе исследуются и сравниваются дисперсия и пространственные корреляции флюктуаций концентрации, полученные с помощью трёх методов — прямого моделирования методом Монте-Карло, численного моделирования по методу SKMF, аналитического приближения в рамках SKMF. Сравнение этих методов подтверждает соответствие определённой амплитуды шума частоты усреднению по соответствующему конечному количеству Монте-Карло-запусков (по конечному числу копий канонического ансамбля). Запропоновано розвиток нелінійного кінетичного середньопольового моделю Жоржа Мартана 1990 року. Показано, що у наближенні квазистаціонарности він відповідає Хачатуряновому моделю. Строго доведено, що Мартанів модель та його 3DD-версія завжди забезпечують зменшення вільної енергії та не уможливлюють моделювати подолання бар’єру вільної енергії разом з зародкуванням. Для реалізації процесів зародкування в середньо-польових моделях необхідно вводити шум. На відміну від поширеного способу введення шуму (як шуму концентрації), ми вводимо шум частоти обмінів місцями через стрибки як основну причину флюктуацій. Нова метода називається SKMF (Stochastic Kinetic Mean Field). У цій роботі досліджуються та порівнюються дисперсія та просторові кореляції флюктуацій концентрації за допомогою трьох метод — прямого моделювання за методою Монте-Карло, чисельного моделювання за методою SKMF й аналітичного наближення в рамках SKMF. Порівняння цих метод підтверджує відповідність певної амплітуди шуму частот усередненню по відповідній скінченній кількості Монте-Карло-запусків (по скінченній кількості копій канонічного ансамблю).
issn 1024-1809
url https://nasplib.isofts.kiev.ua/handle/123456789/151873
citation_txt Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo / A. Gusak, T. Zaporozhets // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 11. — С. 1415-1435. — Бібліогр.: 26 назв. — англ.
work_keys_str_mv AT gusaka martinskineticmeanfieldmodelrevisitedfrequencynoiseapproachversusmontecarlo
AT zaporozhetst martinskineticmeanfieldmodelrevisitedfrequencynoiseapproachversusmontecarlo
AT gusaka snovaokinetičeskoisrednepolevoimodelimartanačastotnošumovoipodhodvsravneniismetodommontekarlo
AT zaporozhetst snovaokinetičeskoisrednepolevoimodelimartanačastotnošumovoipodhodvsravneniismetodommontekarlo
AT gusaka znovupromartanívkínetičniiserednʹopolʹoviimodelʹčastotnošumoviipídhíduporívnânnízmetodommontekarlo
AT zaporozhetst znovupromartanívkínetičniiserednʹopolʹoviimodelʹčastotnošumoviipídhíduporívnânnízmetodommontekarlo
first_indexed 2025-12-07T19:53:07Z
last_indexed 2025-12-07T19:53:07Z
_version_ 1850880492004442112