Some (Hopf) algebraic properties of circulant matrices

We study some (Hopf) algebraic properties of circulant matrices, inspired by the fact that the algebra of circulant n × n matrices is isomorphic to the group algebra of the cyclic group with n elements. We introduce also a class of matrices that generalize both circulant and skew circulant matri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2012
Hauptverfasser: Albuquerque, H., Panaite, F.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2012
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/152161
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Some (Hopf) algebraic properties of circulant matrices / H. Albuquerque, F. Panaite // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 1–17. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152161
record_format dspace
spelling Albuquerque, H.
Panaite, F.
2019-06-08T07:27:01Z
2019-06-08T07:27:01Z
2012
Some (Hopf) algebraic properties of circulant matrices / H. Albuquerque, F. Panaite // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 1–17. — Бібліогр.: 5 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 15B05; 16W30.
https://nasplib.isofts.kiev.ua/handle/123456789/152161
We study some (Hopf) algebraic properties of circulant matrices, inspired by the fact that the algebra of circulant n × n matrices is isomorphic to the group algebra of the cyclic group with n elements. We introduce also a class of matrices that generalize both circulant and skew circulant matrices, and for which the eigenvalues and eigenvectors can be read directly from their entries.
The first author was partially supported by the Centre for Mathematics of the University of Coimbra (CMUC). The second author was partially supported by the CNCSIS project “Hopf algebras, cyclic homology and monoidal categories”, contract nr. 560/2009, CNCSIS code ID−69.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Some (Hopf) algebraic properties of circulant matrices
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Some (Hopf) algebraic properties of circulant matrices
spellingShingle Some (Hopf) algebraic properties of circulant matrices
Albuquerque, H.
Panaite, F.
title_short Some (Hopf) algebraic properties of circulant matrices
title_full Some (Hopf) algebraic properties of circulant matrices
title_fullStr Some (Hopf) algebraic properties of circulant matrices
title_full_unstemmed Some (Hopf) algebraic properties of circulant matrices
title_sort some (hopf) algebraic properties of circulant matrices
author Albuquerque, H.
Panaite, F.
author_facet Albuquerque, H.
Panaite, F.
publishDate 2012
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We study some (Hopf) algebraic properties of circulant matrices, inspired by the fact that the algebra of circulant n × n matrices is isomorphic to the group algebra of the cyclic group with n elements. We introduce also a class of matrices that generalize both circulant and skew circulant matrices, and for which the eigenvalues and eigenvectors can be read directly from their entries.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152161
citation_txt Some (Hopf) algebraic properties of circulant matrices / H. Albuquerque, F. Panaite // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 1–17. — Бібліогр.: 5 назв. — англ.
work_keys_str_mv AT albuquerqueh somehopfalgebraicpropertiesofcirculantmatrices
AT panaitef somehopfalgebraicpropertiesofcirculantmatrices
first_indexed 2025-11-30T17:03:52Z
last_indexed 2025-11-30T17:03:52Z
_version_ 1850858208302727168