On S-quasinormally embedded subgroups of finite groups
Let G be a finite group. A subgroup A is called:1) S-quasinormal in G if A is permutable with all Sylow subgroups in G 2) S-quasinormally embedded in G if every Sylow subgroup of A is a Sylow subgroup of some S-quasinormal subgroup of G. Let BseG be the subgroup generated by all the subgroups of B w...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2012 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2012
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/152183 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On S-quasinormally embedded subgroups of finite groups / Kh.A. Al-Sharo, O. Shemetkova, Xiaolan Yi // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 18–25. — Бібліогр.: 20 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-152183 |
|---|---|
| record_format |
dspace |
| spelling |
Al-Sharo, Kh.A. Shemetkova, O. Xiaolan Yi 2019-06-08T09:40:28Z 2019-06-08T09:40:28Z 2012 On S-quasinormally embedded subgroups of finite groups / Kh.A. Al-Sharo, O. Shemetkova, Xiaolan Yi // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 18–25. — Бібліогр.: 20 назв. — англ. 1726-3255 2010 Mathematics Subject Classification:20D10, 20D20, 20D25. https://nasplib.isofts.kiev.ua/handle/123456789/152183 Let G be a finite group. A subgroup A is called:1) S-quasinormal in G if A is permutable with all Sylow subgroups in G 2) S-quasinormally embedded in G if every Sylow subgroup of A is a Sylow subgroup of some S-quasinormal subgroup of G. Let BseG be the subgroup generated by all the subgroups of B which are S-quasinormally embedded in G. A subgroup B is called SE-supplemented in G if there exists a subgroup T such that G = BT and B ∩ T ≤ BseG. The main result of the paper is the following. Research of the third author (corresponding author) was supported by NNSF of China (grant no. 11101369). en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On S-quasinormally embedded subgroups of finite groups Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On S-quasinormally embedded subgroups of finite groups |
| spellingShingle |
On S-quasinormally embedded subgroups of finite groups Al-Sharo, Kh.A. Shemetkova, O. Xiaolan Yi |
| title_short |
On S-quasinormally embedded subgroups of finite groups |
| title_full |
On S-quasinormally embedded subgroups of finite groups |
| title_fullStr |
On S-quasinormally embedded subgroups of finite groups |
| title_full_unstemmed |
On S-quasinormally embedded subgroups of finite groups |
| title_sort |
on s-quasinormally embedded subgroups of finite groups |
| author |
Al-Sharo, Kh.A. Shemetkova, O. Xiaolan Yi |
| author_facet |
Al-Sharo, Kh.A. Shemetkova, O. Xiaolan Yi |
| publishDate |
2012 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let G be a finite group. A subgroup A is called:1) S-quasinormal in G if A is permutable with all Sylow subgroups in G 2) S-quasinormally embedded in G if every Sylow subgroup of A is a Sylow subgroup of some S-quasinormal subgroup of G. Let BseG be the subgroup generated by all the subgroups of B which are S-quasinormally embedded in G. A subgroup B is called SE-supplemented in G if there exists a subgroup T such that G = BT and B ∩ T ≤ BseG. The main result of the paper is the following.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/152183 |
| citation_txt |
On S-quasinormally embedded subgroups of finite groups / Kh.A. Al-Sharo, O. Shemetkova, Xiaolan Yi // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 18–25. — Бібліогр.: 20 назв. — англ. |
| work_keys_str_mv |
AT alsharokha onsquasinormallyembeddedsubgroupsoffinitegroups AT shemetkovao onsquasinormallyembeddedsubgroupsoffinitegroups AT xiaolanyi onsquasinormallyembeddedsubgroupsoffinitegroups |
| first_indexed |
2025-12-07T15:59:30Z |
| last_indexed |
2025-12-07T15:59:30Z |
| _version_ |
1850865793744502784 |