On S-quasinormally embedded subgroups of finite groups

Let G be a finite group. A subgroup A is called:1) S-quasinormal in G if A is permutable with all Sylow subgroups in G 2) S-quasinormally embedded in G if every Sylow subgroup of A is a Sylow subgroup of some S-quasinormal subgroup of G. Let BseG be the subgroup generated by all the subgroups of B w...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2012
Main Authors: Al-Sharo, Kh.A., Shemetkova, O., Xiaolan Yi
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2012
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/152183
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On S-quasinormally embedded subgroups of finite groups / Kh.A. Al-Sharo, O. Shemetkova, Xiaolan Yi // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 18–25. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152183
record_format dspace
spelling Al-Sharo, Kh.A.
Shemetkova, O.
Xiaolan Yi
2019-06-08T09:40:28Z
2019-06-08T09:40:28Z
2012
On S-quasinormally embedded subgroups of finite groups / Kh.A. Al-Sharo, O. Shemetkova, Xiaolan Yi // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 18–25. — Бібліогр.: 20 назв. — англ.
1726-3255
2010 Mathematics Subject Classification:20D10, 20D20, 20D25.
https://nasplib.isofts.kiev.ua/handle/123456789/152183
Let G be a finite group. A subgroup A is called:1) S-quasinormal in G if A is permutable with all Sylow subgroups in G 2) S-quasinormally embedded in G if every Sylow subgroup of A is a Sylow subgroup of some S-quasinormal subgroup of G. Let BseG be the subgroup generated by all the subgroups of B which are S-quasinormally embedded in G. A subgroup B is called SE-supplemented in G if there exists a subgroup T such that G = BT and B ∩ T ≤ BseG. The main result of the paper is the following.
Research of the third author (corresponding author) was supported by NNSF of China (grant no. 11101369).
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On S-quasinormally embedded subgroups of finite groups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On S-quasinormally embedded subgroups of finite groups
spellingShingle On S-quasinormally embedded subgroups of finite groups
Al-Sharo, Kh.A.
Shemetkova, O.
Xiaolan Yi
title_short On S-quasinormally embedded subgroups of finite groups
title_full On S-quasinormally embedded subgroups of finite groups
title_fullStr On S-quasinormally embedded subgroups of finite groups
title_full_unstemmed On S-quasinormally embedded subgroups of finite groups
title_sort on s-quasinormally embedded subgroups of finite groups
author Al-Sharo, Kh.A.
Shemetkova, O.
Xiaolan Yi
author_facet Al-Sharo, Kh.A.
Shemetkova, O.
Xiaolan Yi
publishDate 2012
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let G be a finite group. A subgroup A is called:1) S-quasinormal in G if A is permutable with all Sylow subgroups in G 2) S-quasinormally embedded in G if every Sylow subgroup of A is a Sylow subgroup of some S-quasinormal subgroup of G. Let BseG be the subgroup generated by all the subgroups of B which are S-quasinormally embedded in G. A subgroup B is called SE-supplemented in G if there exists a subgroup T such that G = BT and B ∩ T ≤ BseG. The main result of the paper is the following.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152183
citation_txt On S-quasinormally embedded subgroups of finite groups / Kh.A. Al-Sharo, O. Shemetkova, Xiaolan Yi // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 18–25. — Бібліогр.: 20 назв. — англ.
work_keys_str_mv AT alsharokha onsquasinormallyembeddedsubgroupsoffinitegroups
AT shemetkovao onsquasinormallyembeddedsubgroupsoffinitegroups
AT xiaolanyi onsquasinormallyembeddedsubgroupsoffinitegroups
first_indexed 2025-12-07T15:59:30Z
last_indexed 2025-12-07T15:59:30Z
_version_ 1850865793744502784