Algebra in superextensions of semilattices

Given a semilattice X we study the algebraic properties of the semigroup υ(X) of upfamilies on X. The semigroup υ(X) contains the Stone-ˇCech extension β(X), the superextension λ(X), and the space of filters φ(X) on X as closed subsemigroups. We prove that υ(X) is a semilattice iff λ(X) is a semilat...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2012
Автори: Banakh, T., Gavrylkiv, V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2012
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/152184
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Algebra in superextensions of semilattices / T. Banakh, V. Gavrylkiv // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 26–42. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152184
record_format dspace
spelling Banakh, T.
Gavrylkiv, V.
2019-06-08T09:42:17Z
2019-06-08T09:42:17Z
2012
Algebra in superextensions of semilattices / T. Banakh, V. Gavrylkiv // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 26–42. — Бібліогр.: 14 назв. — англ.
1726-3255
2010 Mathematics Subject Classification: 06A12, 20M10.
https://nasplib.isofts.kiev.ua/handle/123456789/152184
Given a semilattice X we study the algebraic properties of the semigroup υ(X) of upfamilies on X. The semigroup υ(X) contains the Stone-ˇCech extension β(X), the superextension λ(X), and the space of filters φ(X) on X as closed subsemigroups. We prove that υ(X) is a semilattice iff λ(X) is a semilattice iff φ(X) is a semilattice iff the semilattice X is finite and linearly ordered. We prove that the semigroup β(X) is a band if and only if X has no infinite antichains, and the semigroup λ(X) is commutative if and only if X is a bush with finite branches.
The first author has been partially financed by NCN means granted by decision DEC-2011/01/B/ST1/01439.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Algebra in superextensions of semilattices
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Algebra in superextensions of semilattices
spellingShingle Algebra in superextensions of semilattices
Banakh, T.
Gavrylkiv, V.
title_short Algebra in superextensions of semilattices
title_full Algebra in superextensions of semilattices
title_fullStr Algebra in superextensions of semilattices
title_full_unstemmed Algebra in superextensions of semilattices
title_sort algebra in superextensions of semilattices
author Banakh, T.
Gavrylkiv, V.
author_facet Banakh, T.
Gavrylkiv, V.
publishDate 2012
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Given a semilattice X we study the algebraic properties of the semigroup υ(X) of upfamilies on X. The semigroup υ(X) contains the Stone-ˇCech extension β(X), the superextension λ(X), and the space of filters φ(X) on X as closed subsemigroups. We prove that υ(X) is a semilattice iff λ(X) is a semilattice iff φ(X) is a semilattice iff the semilattice X is finite and linearly ordered. We prove that the semigroup β(X) is a band if and only if X has no infinite antichains, and the semigroup λ(X) is commutative if and only if X is a bush with finite branches.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152184
citation_txt Algebra in superextensions of semilattices / T. Banakh, V. Gavrylkiv // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 26–42. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT banakht algebrainsuperextensionsofsemilattices
AT gavrylkivv algebrainsuperextensionsofsemilattices
first_indexed 2025-12-07T17:19:46Z
last_indexed 2025-12-07T17:19:46Z
_version_ 1850870843876311040