Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups

A Cayley graph X = Cay(G, S) is called normal for G if the right regular representation R(G) of G is normal in the full automorphism group Aut(X) of X. In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group G are normal when (|G|,2) = (|G|,3) =...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2012
1. Verfasser: Ghasemi, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2012
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/152186
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups / M. Ghasemi // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 52–58. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152186
record_format dspace
spelling Ghasemi, M.
2019-06-08T09:48:59Z
2019-06-08T09:48:59Z
2012
Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups / M. Ghasemi // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 52–58. — Бібліогр.: 14 назв. — англ.
1726-3255
2000 Mathematics Subject Classification:05C25, 20B25.
https://nasplib.isofts.kiev.ua/handle/123456789/152186
A Cayley graph X = Cay(G, S) is called normal for G if the right regular representation R(G) of G is normal in the full automorphism group Aut(X) of X. In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group G are normal when (|G|,2) = (|G|,3) = 1, and X is not isomorphic to either Cay(G, S), where |G| = 5n, and |Aut(X)| = 2m.3.5n, where m ∈ {2,3} and n ≥ 3, or Cay(G, S) where |G| = 5qn (q is prime) and |Aut(X)| = 2m.3.5.qn, where q ≥ 7, m ∈ {2,3} and n ≥ 1.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
spellingShingle Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
Ghasemi, M.
title_short Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
title_full Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
title_fullStr Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
title_full_unstemmed Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
title_sort automorphism groups of tetravalent cayley graphs on minimal non-abelian groups
author Ghasemi, M.
author_facet Ghasemi, M.
publishDate 2012
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description A Cayley graph X = Cay(G, S) is called normal for G if the right regular representation R(G) of G is normal in the full automorphism group Aut(X) of X. In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group G are normal when (|G|,2) = (|G|,3) = 1, and X is not isomorphic to either Cay(G, S), where |G| = 5n, and |Aut(X)| = 2m.3.5n, where m ∈ {2,3} and n ≥ 3, or Cay(G, S) where |G| = 5qn (q is prime) and |Aut(X)| = 2m.3.5.qn, where q ≥ 7, m ∈ {2,3} and n ≥ 1.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152186
citation_txt Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups / M. Ghasemi // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 52–58. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT ghasemim automorphismgroupsoftetravalentcayleygraphsonminimalnonabeliangroups
first_indexed 2025-12-07T19:00:06Z
last_indexed 2025-12-07T19:00:06Z
_version_ 1850877156310122496