Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
A Cayley graph X = Cay(G, S) is called normal for G if the right regular representation R(G) of G is normal in the full automorphism group Aut(X) of X. In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group G are normal when (|G|,2) = (|G|,3) =...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2012 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2012
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/152186 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups / M. Ghasemi // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 52–58. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-152186 |
|---|---|
| record_format |
dspace |
| spelling |
Ghasemi, M. 2019-06-08T09:48:59Z 2019-06-08T09:48:59Z 2012 Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups / M. Ghasemi // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 52–58. — Бібліогр.: 14 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:05C25, 20B25. https://nasplib.isofts.kiev.ua/handle/123456789/152186 A Cayley graph X = Cay(G, S) is called normal for G if the right regular representation R(G) of G is normal in the full automorphism group Aut(X) of X. In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group G are normal when (|G|,2) = (|G|,3) = 1, and X is not isomorphic to either Cay(G, S), where |G| = 5n, and |Aut(X)| = 2m.3.5n, where m ∈ {2,3} and n ≥ 3, or Cay(G, S) where |G| = 5qn (q is prime) and |Aut(X)| = 2m.3.5.qn, where q ≥ 7, m ∈ {2,3} and n ≥ 1. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups |
| spellingShingle |
Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups Ghasemi, M. |
| title_short |
Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups |
| title_full |
Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups |
| title_fullStr |
Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups |
| title_full_unstemmed |
Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups |
| title_sort |
automorphism groups of tetravalent cayley graphs on minimal non-abelian groups |
| author |
Ghasemi, M. |
| author_facet |
Ghasemi, M. |
| publishDate |
2012 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
A Cayley graph X = Cay(G, S) is called normal for G if the right regular representation R(G) of G is normal in the full automorphism group Aut(X) of X. In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group G are normal when (|G|,2) = (|G|,3) = 1, and X is not isomorphic to either Cay(G, S), where |G| = 5n, and |Aut(X)| = 2m.3.5n, where m ∈ {2,3} and n ≥ 3, or Cay(G, S) where |G| = 5qn (q is prime) and |Aut(X)| = 2m.3.5.qn, where q ≥ 7, m ∈ {2,3} and n ≥ 1.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/152186 |
| citation_txt |
Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups / M. Ghasemi // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 52–58. — Бібліогр.: 14 назв. — англ. |
| work_keys_str_mv |
AT ghasemim automorphismgroupsoftetravalentcayleygraphsonminimalnonabeliangroups |
| first_indexed |
2025-12-07T19:00:06Z |
| last_indexed |
2025-12-07T19:00:06Z |
| _version_ |
1850877156310122496 |