Partitions of groups into sparse subsets

A subset A of a group G is called sparse if, for every infinite subset X of G, there exists a finite subset F ⊂ X, such that ∩x∈FxA is finite. We denote by η(G) the minimal cardinal such that G can be partitioned in η(G) sparse subsets. If |G| > (κ+)א0 then η(G) > κ, if |G| ≤ κ+ then η(G) ≤ κ....

Full description

Saved in:
Bibliographic Details
Date:2012
Main Author: Protasov, I.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2012
Series:Algebra and Discrete Mathematics
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/152190
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Partitions of groups into sparse subsets / I. Protasov // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 107–110. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine