Partitions of groups into sparse subsets
A subset A of a group G is called sparse if, for every infinite subset X of G, there exists a finite subset F ⊂ X, such that ∩x∈FxA is finite. We denote by η(G) the minimal cardinal such that G can be partitioned in η(G) sparse subsets. If |G| > (κ+)א0 then η(G) > κ, if |G| ≤ κ+ then η(G) ≤ κ....
Saved in:
| Date: | 2012 |
|---|---|
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2012
|
| Series: | Algebra and Discrete Mathematics |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/152190 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Partitions of groups into sparse subsets / I. Protasov // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 107–110. — Бібліогр.: 7 назв. — англ. |