Local embeddability
For an arbitrary class of algebraic structures we consider a notion of a structure locally embeddable to structures of the class. This generalizes the notion of a group locally embeddable to finite groups studied by Vershik and Gordon. We give various model-theoretic characterizations of such struct...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2012 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2012
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/152225 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Local embeddability / O. Belegradek // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 1. — С. 14–28. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | For an arbitrary class of algebraic structures we consider a notion of a structure locally embeddable to structures of the class. This generalizes the notion of a group locally embeddable to finite groups studied by Vershik and Gordon. We give various model-theoretic characterizations of such structures. Some of them generalize known group-theoretic results.
|
|---|---|
| ISSN: | 1726-3255 |