Characterization of finite groups with some S-quasinormal subgroups of fixed order

Let G be a finite group. A subgroup of G is said to be S-quasinormal in G if it permutes with every Sylow subgroup of G. We fix in every non-cyclic Sylow subgroup P of the generalized Fitting subgroup a subgroup D such that 1 < |D| < |P| and characterize G under the assumption that all subgrou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2012
1. Verfasser: Asaad, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2012
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/152229
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Characterization of finite groups with some S-quasinormal subgroups of fixed order / M. Asaad, P. Csorgo // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 161–167. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152229
record_format dspace
spelling Asaad, M.
2019-06-09T05:51:09Z
2019-06-09T05:51:09Z
2012
Characterization of finite groups with some S-quasinormal subgroups of fixed order / M. Asaad, P. Csorgo // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 161–167. — Бібліогр.: 11 назв. — англ.
1726-3255
2000 MSC:20D10, 20D30.
https://nasplib.isofts.kiev.ua/handle/123456789/152229
Let G be a finite group. A subgroup of G is said to be S-quasinormal in G if it permutes with every Sylow subgroup of G. We fix in every non-cyclic Sylow subgroup P of the generalized Fitting subgroup a subgroup D such that 1 < |D| < |P| and characterize G under the assumption that all subgroups H of P with |H| = |D| are S-quasinormal in G. Some recent results are generalized.
This paper was partly supported by Hungarian National Foundation for Scientific Research Grant # K84233.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Characterization of finite groups with some S-quasinormal subgroups of fixed order
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Characterization of finite groups with some S-quasinormal subgroups of fixed order
spellingShingle Characterization of finite groups with some S-quasinormal subgroups of fixed order
Asaad, M.
title_short Characterization of finite groups with some S-quasinormal subgroups of fixed order
title_full Characterization of finite groups with some S-quasinormal subgroups of fixed order
title_fullStr Characterization of finite groups with some S-quasinormal subgroups of fixed order
title_full_unstemmed Characterization of finite groups with some S-quasinormal subgroups of fixed order
title_sort characterization of finite groups with some s-quasinormal subgroups of fixed order
author Asaad, M.
author_facet Asaad, M.
publishDate 2012
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let G be a finite group. A subgroup of G is said to be S-quasinormal in G if it permutes with every Sylow subgroup of G. We fix in every non-cyclic Sylow subgroup P of the generalized Fitting subgroup a subgroup D such that 1 < |D| < |P| and characterize G under the assumption that all subgroups H of P with |H| = |D| are S-quasinormal in G. Some recent results are generalized.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152229
citation_txt Characterization of finite groups with some S-quasinormal subgroups of fixed order / M. Asaad, P. Csorgo // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 161–167. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT asaadm characterizationoffinitegroupswithsomesquasinormalsubgroupsoffixedorder
first_indexed 2025-12-07T19:41:59Z
last_indexed 2025-12-07T19:41:59Z
_version_ 1850879791314501632