Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers

We describe the geometry of representation of numbers belonging to (0, 1] by the positive Lüroth series, i.e., special series whose terms are reciprocal of positive integers. We establish the geometrical meaning of digits, give properties of cylinders, semicylinders and tail sets, metric relations;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2012
Hauptverfasser: Zhykharyeva, Yu., Pratsiovytyi, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2012
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/152235
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers / Yu. Zhykharyeva, M. Pratsiovytyi // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 1. — С. 145–160. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152235
record_format dspace
spelling Zhykharyeva, Yu.
Pratsiovytyi, M.
2019-06-09T06:04:06Z
2019-06-09T06:04:06Z
2012
Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers / Yu. Zhykharyeva, M. Pratsiovytyi // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 1. — С. 145–160. — Бібліогр.: 18 назв. — англ.
1726-3255
2010 MSC:11K55.
https://nasplib.isofts.kiev.ua/handle/123456789/152235
We describe the geometry of representation of numbers belonging to (0, 1] by the positive Lüroth series, i.e., special series whose terms are reciprocal of positive integers. We establish the geometrical meaning of digits, give properties of cylinders, semicylinders and tail sets, metric relations; prove topological, metric and fractal properties of sets of numbers with restrictions on use of “digits”; show that for determination of Hausdorff-Besicovitch dimension of Borel set it is enough to use connected unions of cylindrical sets of the same rank. Some applications of L-representation to probabilistic theory of numbers are also considered.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers
spellingShingle Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers
Zhykharyeva, Yu.
Pratsiovytyi, M.
title_short Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers
title_full Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers
title_fullStr Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers
title_full_unstemmed Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers
title_sort expansions of numbers in positive lüroth series and their applications to metric, probabilistic and fractal theories of numbers
author Zhykharyeva, Yu.
Pratsiovytyi, M.
author_facet Zhykharyeva, Yu.
Pratsiovytyi, M.
publishDate 2012
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We describe the geometry of representation of numbers belonging to (0, 1] by the positive Lüroth series, i.e., special series whose terms are reciprocal of positive integers. We establish the geometrical meaning of digits, give properties of cylinders, semicylinders and tail sets, metric relations; prove topological, metric and fractal properties of sets of numbers with restrictions on use of “digits”; show that for determination of Hausdorff-Besicovitch dimension of Borel set it is enough to use connected unions of cylindrical sets of the same rank. Some applications of L-representation to probabilistic theory of numbers are also considered.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152235
citation_txt Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers / Yu. Zhykharyeva, M. Pratsiovytyi // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 1. — С. 145–160. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT zhykharyevayu expansionsofnumbersinpositivelurothseriesandtheirapplicationstometricprobabilisticandfractaltheoriesofnumbers
AT pratsiovytyim expansionsofnumbersinpositivelurothseriesandtheirapplicationstometricprobabilisticandfractaltheoriesofnumbers
first_indexed 2025-12-07T16:01:58Z
last_indexed 2025-12-07T16:01:58Z
_version_ 1850865948548923392