The symmetries of McCullough-Miller space
We prove that if W is the free product of at least four groups of order 2, then the automorphism group of the McCullough-Miller space corresponding to W is isomorphic to group of outer automorphisms of W. We also prove that, for each integer n ≥ 3, the automorphism group of the hypertree complex of...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2012 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2012
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/152242 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | The symmetries of McCullough-Miller space / A. Piggott // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 239–266. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-152242 |
|---|---|
| record_format |
dspace |
| spelling |
Piggott, A. 2019-06-09T06:10:02Z 2019-06-09T06:10:02Z 2012 The symmetries of McCullough-Miller space / A. Piggott // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 239–266. — Бібліогр.: 7 назв. — англ. 1726-3255 2010 MSC:20E36; 05E18. https://nasplib.isofts.kiev.ua/handle/123456789/152242 We prove that if W is the free product of at least four groups of order 2, then the automorphism group of the McCullough-Miller space corresponding to W is isomorphic to group of outer automorphisms of W. We also prove that, for each integer n ≥ 3, the automorphism group of the hypertree complex of rank n is isomorphic to the symmetric group of rank n. Thanks to Murray Elder, and the University of Newcastle, Australia, for their hospitality as this paper was written. Thanks to Andy Eisenberg, and the anonymous referee, for carefully reading the paper, and suggesting improvements. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics The symmetries of McCullough-Miller space Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
The symmetries of McCullough-Miller space |
| spellingShingle |
The symmetries of McCullough-Miller space Piggott, A. |
| title_short |
The symmetries of McCullough-Miller space |
| title_full |
The symmetries of McCullough-Miller space |
| title_fullStr |
The symmetries of McCullough-Miller space |
| title_full_unstemmed |
The symmetries of McCullough-Miller space |
| title_sort |
symmetries of mccullough-miller space |
| author |
Piggott, A. |
| author_facet |
Piggott, A. |
| publishDate |
2012 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
We prove that if W is the free product of at least four groups of order 2, then the automorphism group of the McCullough-Miller space corresponding to W is isomorphic to group of outer automorphisms of W. We also prove that, for each integer n ≥ 3, the automorphism group of the hypertree complex of rank n is isomorphic to the symmetric group of rank n.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/152242 |
| citation_txt |
The symmetries of McCullough-Miller space / A. Piggott // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 239–266. — Бібліогр.: 7 назв. — англ. |
| work_keys_str_mv |
AT piggotta thesymmetriesofmcculloughmillerspace AT piggotta symmetriesofmcculloughmillerspace |
| first_indexed |
2025-12-07T15:12:56Z |
| last_indexed |
2025-12-07T15:12:56Z |
| _version_ |
1850862863818686464 |