Prethick subsets in partitions of groups

A subset S of a group G is called thick if, for any finite subset F of G, there exists g ∈ G such that Fg ⊆ S, and k-prethick, k ∈ N if there exists a subset K of G such that |K| = k and KS is thick. For every finite partition P of G, at least one cell of P is k-prethick for some k ∈ N. We show that...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2012
Main Authors: Protasov, I.V., Slobodianiuk, S.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2012
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/152243
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Prethick subsets in partitions of groups / I.V. Protasov, S. Slobodianiuk // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 267–275. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152243
record_format dspace
spelling Protasov, I.V.
Slobodianiuk, S.
2019-06-09T06:10:55Z
2019-06-09T06:10:55Z
2012
Prethick subsets in partitions of groups / I.V. Protasov, S. Slobodianiuk // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 267–275. — Бібліогр.: 18 назв. — англ.
1726-3255
2010 MSC:05B40, 20A05.
https://nasplib.isofts.kiev.ua/handle/123456789/152243
A subset S of a group G is called thick if, for any finite subset F of G, there exists g ∈ G such that Fg ⊆ S, and k-prethick, k ∈ N if there exists a subset K of G such that |K| = k and KS is thick. For every finite partition P of G, at least one cell of P is k-prethick for some k ∈ N. We show that if an infinite group G is either Abelian, or countable locally finite, or countable residually finite then, for each k ∈ N, G can be partitioned in two not k-prethick subsets.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Prethick subsets in partitions of groups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Prethick subsets in partitions of groups
spellingShingle Prethick subsets in partitions of groups
Protasov, I.V.
Slobodianiuk, S.
title_short Prethick subsets in partitions of groups
title_full Prethick subsets in partitions of groups
title_fullStr Prethick subsets in partitions of groups
title_full_unstemmed Prethick subsets in partitions of groups
title_sort prethick subsets in partitions of groups
author Protasov, I.V.
Slobodianiuk, S.
author_facet Protasov, I.V.
Slobodianiuk, S.
publishDate 2012
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description A subset S of a group G is called thick if, for any finite subset F of G, there exists g ∈ G such that Fg ⊆ S, and k-prethick, k ∈ N if there exists a subset K of G such that |K| = k and KS is thick. For every finite partition P of G, at least one cell of P is k-prethick for some k ∈ N. We show that if an infinite group G is either Abelian, or countable locally finite, or countable residually finite then, for each k ∈ N, G can be partitioned in two not k-prethick subsets.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152243
citation_txt Prethick subsets in partitions of groups / I.V. Protasov, S. Slobodianiuk // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 267–275. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT protasoviv prethicksubsetsinpartitionsofgroups
AT slobodianiuks prethicksubsetsinpartitionsofgroups
first_indexed 2025-12-07T20:12:59Z
last_indexed 2025-12-07T20:12:59Z
_version_ 1850881741800079360