Prethick subsets in partitions of groups

A subset S of a group G is called thick if, for any finite subset F of G, there exists g ∈ G such that Fg ⊆ S, and k-prethick, k ∈ N if there exists a subset K of G such that |K| = k and KS is thick. For every finite partition P of G, at least one cell of P is k-prethick for some k ∈ N. We show that...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2012
Main Authors: Protasov, I.V., Slobodianiuk, S.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2012
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/152243
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Prethick subsets in partitions of groups / I.V. Protasov, S. Slobodianiuk // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 267–275. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine