Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators)

In this work the closure operators of a category of modules R-Mod are studied. Every closure operator C of R-Mod defines two functions F₁с and F₂с, which in every module M distinguish the set of C-dense submodules F₁с(M) and the set of C-closed submodules F₂с(M). By means of these functions three ty...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2013
Автор: Kashu, A.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2013
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/152290
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators) / A.I. Kashu // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 213–228. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152290
record_format dspace
spelling Kashu, A.I.
2019-06-09T15:31:29Z
2019-06-09T15:31:29Z
2013
Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators) / A.I. Kashu // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 213–228. — Бібліогр.: 10 назв. — англ.
1726-3255
2010 MSC:16D90, 16S90, 06B23.
https://nasplib.isofts.kiev.ua/handle/123456789/152290
In this work the closure operators of a category of modules R-Mod are studied. Every closure operator C of R-Mod defines two functions F₁с and F₂с, which in every module M distinguish the set of C-dense submodules F₁с(M) and the set of C-closed submodules F₂с(M). By means of these functions three types of closure operators are described: 1) weakly hereditary; 2) idempotent; 3) weakly hereditary and idempotent.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators)
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators)
spellingShingle Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators)
Kashu, A.I.
title_short Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators)
title_full Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators)
title_fullStr Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators)
title_full_unstemmed Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators)
title_sort closure operators in the categories of modules. part i (weakly hereditary and idempotent operators)
author Kashu, A.I.
author_facet Kashu, A.I.
publishDate 2013
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description In this work the closure operators of a category of modules R-Mod are studied. Every closure operator C of R-Mod defines two functions F₁с and F₂с, which in every module M distinguish the set of C-dense submodules F₁с(M) and the set of C-closed submodules F₂с(M). By means of these functions three types of closure operators are described: 1) weakly hereditary; 2) idempotent; 3) weakly hereditary and idempotent.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152290
citation_txt Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators) / A.I. Kashu // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 213–228. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT kashuai closureoperatorsinthecategoriesofmodulespartiweaklyhereditaryandidempotentoperators
first_indexed 2025-12-07T17:57:29Z
last_indexed 2025-12-07T17:57:29Z
_version_ 1850873216256442368