Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators)
In this work the closure operators of a category of modules R-Mod are studied. Every closure operator C of R-Mod defines two functions F₁с and F₂с, which in every module M distinguish the set of C-dense submodules F₁с(M) and the set of C-closed submodules F₂с(M). By means of these functions three ty...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2013 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2013
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/152290 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators) / A.I. Kashu // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 213–228. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-152290 |
|---|---|
| record_format |
dspace |
| spelling |
Kashu, A.I. 2019-06-09T15:31:29Z 2019-06-09T15:31:29Z 2013 Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators) / A.I. Kashu // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 213–228. — Бібліогр.: 10 назв. — англ. 1726-3255 2010 MSC:16D90, 16S90, 06B23. https://nasplib.isofts.kiev.ua/handle/123456789/152290 In this work the closure operators of a category of modules R-Mod are studied. Every closure operator C of R-Mod defines two functions F₁с and F₂с, which in every module M distinguish the set of C-dense submodules F₁с(M) and the set of C-closed submodules F₂с(M). By means of these functions three types of closure operators are described: 1) weakly hereditary; 2) idempotent; 3) weakly hereditary and idempotent. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators) Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators) |
| spellingShingle |
Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators) Kashu, A.I. |
| title_short |
Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators) |
| title_full |
Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators) |
| title_fullStr |
Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators) |
| title_full_unstemmed |
Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators) |
| title_sort |
closure operators in the categories of modules. part i (weakly hereditary and idempotent operators) |
| author |
Kashu, A.I. |
| author_facet |
Kashu, A.I. |
| publishDate |
2013 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
In this work the closure operators of a category of modules R-Mod are studied. Every closure operator C of R-Mod defines two functions F₁с and F₂с, which in every module M distinguish the set of C-dense submodules F₁с(M) and the set of C-closed submodules F₂с(M). By means of these functions three types of closure operators are described: 1) weakly hereditary; 2) idempotent; 3) weakly hereditary and idempotent.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/152290 |
| citation_txt |
Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators) / A.I. Kashu // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 213–228. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT kashuai closureoperatorsinthecategoriesofmodulespartiweaklyhereditaryandidempotentoperators |
| first_indexed |
2025-12-07T17:57:29Z |
| last_indexed |
2025-12-07T17:57:29Z |
| _version_ |
1850873216256442368 |