The p–gen nature of M₀(V ) (I)

Let V be a finite group (not elementary two) and p ≥ 5 a prime. The question as to when the nearring M₀(V) of all zero-fixing self-maps on V is generated by a unit of order p is difficult. In this paper we show M₀(V) is so generated if and only if V does not belong to one of three finite disjoint fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2013
1. Verfasser: Scott, S.D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2013
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/152293
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The p–gen nature of M₀(V ) (I) / S.D. Scott // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 237–268. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152293
record_format dspace
spelling Scott, S.D.
2019-06-09T15:33:24Z
2019-06-09T15:33:24Z
2013
The p–gen nature of M₀(V ) (I) / S.D. Scott // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 237–268. — Бібліогр.: 6 назв. — англ.
1726-3255
2010 MSC:16Y30.
https://nasplib.isofts.kiev.ua/handle/123456789/152293
Let V be a finite group (not elementary two) and p ≥ 5 a prime. The question as to when the nearring M₀(V) of all zero-fixing self-maps on V is generated by a unit of order p is difficult. In this paper we show M₀(V) is so generated if and only if V does not belong to one of three finite disjoint families D#(1, p) (=D(1, p) ∪ {{0}}), D(2, p) and D(3, p) of groups, where D(n, p) are those groups G (not elementary two) with |G| ≤ np and δ(G) > (n − 1)p (see [1] or §.1 for the definition of δ(G)).
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
The p–gen nature of M₀(V ) (I)
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The p–gen nature of M₀(V ) (I)
spellingShingle The p–gen nature of M₀(V ) (I)
Scott, S.D.
title_short The p–gen nature of M₀(V ) (I)
title_full The p–gen nature of M₀(V ) (I)
title_fullStr The p–gen nature of M₀(V ) (I)
title_full_unstemmed The p–gen nature of M₀(V ) (I)
title_sort p–gen nature of m₀(v ) (i)
author Scott, S.D.
author_facet Scott, S.D.
publishDate 2013
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let V be a finite group (not elementary two) and p ≥ 5 a prime. The question as to when the nearring M₀(V) of all zero-fixing self-maps on V is generated by a unit of order p is difficult. In this paper we show M₀(V) is so generated if and only if V does not belong to one of three finite disjoint families D#(1, p) (=D(1, p) ∪ {{0}}), D(2, p) and D(3, p) of groups, where D(n, p) are those groups G (not elementary two) with |G| ≤ np and δ(G) > (n − 1)p (see [1] or §.1 for the definition of δ(G)).
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152293
citation_txt The p–gen nature of M₀(V ) (I) / S.D. Scott // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 237–268. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT scottsd thepgennatureofm0vi
AT scottsd pgennatureofm0vi
first_indexed 2025-12-02T03:30:51Z
last_indexed 2025-12-02T03:30:51Z
_version_ 1850861425536270336