The p–gen nature of M₀(V ) (I)
Let V be a finite group (not elementary two) and p ≥ 5 a prime. The question as to when the nearring M₀(V) of all zero-fixing self-maps on V is generated by a unit of order p is difficult. In this paper we show M₀(V) is so generated if and only if V does not belong to one of three finite disjoint fa...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2013 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2013
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/152293 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | The p–gen nature of M₀(V ) (I) / S.D. Scott // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 237–268. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-152293 |
|---|---|
| record_format |
dspace |
| spelling |
Scott, S.D. 2019-06-09T15:33:24Z 2019-06-09T15:33:24Z 2013 The p–gen nature of M₀(V ) (I) / S.D. Scott // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 237–268. — Бібліогр.: 6 назв. — англ. 1726-3255 2010 MSC:16Y30. https://nasplib.isofts.kiev.ua/handle/123456789/152293 Let V be a finite group (not elementary two) and p ≥ 5 a prime. The question as to when the nearring M₀(V) of all zero-fixing self-maps on V is generated by a unit of order p is difficult. In this paper we show M₀(V) is so generated if and only if V does not belong to one of three finite disjoint families D#(1, p) (=D(1, p) ∪ {{0}}), D(2, p) and D(3, p) of groups, where D(n, p) are those groups G (not elementary two) with |G| ≤ np and δ(G) > (n − 1)p (see [1] or §.1 for the definition of δ(G)). en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics The p–gen nature of M₀(V ) (I) Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
The p–gen nature of M₀(V ) (I) |
| spellingShingle |
The p–gen nature of M₀(V ) (I) Scott, S.D. |
| title_short |
The p–gen nature of M₀(V ) (I) |
| title_full |
The p–gen nature of M₀(V ) (I) |
| title_fullStr |
The p–gen nature of M₀(V ) (I) |
| title_full_unstemmed |
The p–gen nature of M₀(V ) (I) |
| title_sort |
p–gen nature of m₀(v ) (i) |
| author |
Scott, S.D. |
| author_facet |
Scott, S.D. |
| publishDate |
2013 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let V be a finite group (not elementary two) and p ≥ 5 a prime. The question as to when the nearring M₀(V) of all zero-fixing self-maps on V is generated by a unit of order p is difficult. In this paper we show M₀(V) is so generated if and only if V does not belong to one of three finite disjoint families D#(1, p) (=D(1, p) ∪ {{0}}), D(2, p) and D(3, p) of groups, where D(n, p) are those groups G (not elementary two) with |G| ≤ np and δ(G) > (n − 1)p (see [1] or §.1 for the definition of δ(G)).
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/152293 |
| citation_txt |
The p–gen nature of M₀(V ) (I) / S.D. Scott // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 237–268. — Бібліогр.: 6 назв. — англ. |
| work_keys_str_mv |
AT scottsd thepgennatureofm0vi AT scottsd pgennatureofm0vi |
| first_indexed |
2025-12-02T03:30:51Z |
| last_indexed |
2025-12-02T03:30:51Z |
| _version_ |
1850861425536270336 |