On the relation between completeness and H-closedness of pospaces without infinite antichains

We study the relation between completeness and H-closedness for topological partially ordered spaces. In general, a topological partially ordered space with an infinite antichain which is even directed complete and down-directed complete, is not H-closed. On the other hand, for a topological partial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2013
1. Verfasser: Yokoyama, T.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2013
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/152296
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the relation between completeness and H-closedness of pospaces without infinite antichains / T. Yokoyama // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 287–294. — Бібліогр.: 3 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152296
record_format dspace
spelling Yokoyama, T.
2019-06-09T15:36:33Z
2019-06-09T15:36:33Z
2013
On the relation between completeness and H-closedness of pospaces without infinite antichains / T. Yokoyama // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 287–294. — Бібліогр.: 3 назв. — англ.
1726-3255
2010 MSC:Primary 06A06, 06F30; Secondary 54F05, 54H12.
https://nasplib.isofts.kiev.ua/handle/123456789/152296
We study the relation between completeness and H-closedness for topological partially ordered spaces. In general, a topological partially ordered space with an infinite antichain which is even directed complete and down-directed complete, is not H-closed. On the other hand, for a topological partially ordered space without infinite antichains, we give necessary and sufficient condition to be H-closed, using directed completeness and down-directed completeness. Indeed, we prove that {a pospace} X is H-closed if and only if each up-directed (resp. down-directed) subset has a supremum (resp. infimum) and, for each nonempty chain L ⊆ X, ⋁ L∈ cl ↓ L and ⋀L ∈ cl ↑ L. This extends a result of Gutik, Pagon, and Repovs [GPR].
The author is partially supported by the JST CREST Program at Creative Research Institution, Hokkaido University. I would like to thank Professor Dušan Repovš for informing me oftheir interesting works.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On the relation between completeness and H-closedness of pospaces without infinite antichains
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the relation between completeness and H-closedness of pospaces without infinite antichains
spellingShingle On the relation between completeness and H-closedness of pospaces without infinite antichains
Yokoyama, T.
title_short On the relation between completeness and H-closedness of pospaces without infinite antichains
title_full On the relation between completeness and H-closedness of pospaces without infinite antichains
title_fullStr On the relation between completeness and H-closedness of pospaces without infinite antichains
title_full_unstemmed On the relation between completeness and H-closedness of pospaces without infinite antichains
title_sort on the relation between completeness and h-closedness of pospaces without infinite antichains
author Yokoyama, T.
author_facet Yokoyama, T.
publishDate 2013
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We study the relation between completeness and H-closedness for topological partially ordered spaces. In general, a topological partially ordered space with an infinite antichain which is even directed complete and down-directed complete, is not H-closed. On the other hand, for a topological partially ordered space without infinite antichains, we give necessary and sufficient condition to be H-closed, using directed completeness and down-directed completeness. Indeed, we prove that {a pospace} X is H-closed if and only if each up-directed (resp. down-directed) subset has a supremum (resp. infimum) and, for each nonempty chain L ⊆ X, ⋁ L∈ cl ↓ L and ⋀L ∈ cl ↑ L. This extends a result of Gutik, Pagon, and Repovs [GPR].
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152296
citation_txt On the relation between completeness and H-closedness of pospaces without infinite antichains / T. Yokoyama // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 287–294. — Бібліогр.: 3 назв. — англ.
work_keys_str_mv AT yokoyamat ontherelationbetweencompletenessandhclosednessofpospaceswithoutinfiniteantichains
first_indexed 2025-12-07T21:18:55Z
last_indexed 2025-12-07T21:18:55Z
_version_ 1850885889861877760