Power graph of finite abelian groups

Let G be a group. The power graph ΓP(G) of G is a graph with vertex set V(ΓP(G)) = G and two distinct vertices x and y are adjacent in ΓP(G) if and only if either xˡ = y or yʲ = x, where 2 ≤ i, j ≤ n. In this paper, we obtain some fundamental characterizations of the power graph. Also, we characteri...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2013
Main Authors: Tamizh Chelvam, T., Sattanathan, M.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2013
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/152306
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Power graph of finite abelian groups / T. Tamizh Chelvam, M. Sattanathan // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 33–41. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Let G be a group. The power graph ΓP(G) of G is a graph with vertex set V(ΓP(G)) = G and two distinct vertices x and y are adjacent in ΓP(G) if and only if either xˡ = y or yʲ = x, where 2 ≤ i, j ≤ n. In this paper, we obtain some fundamental characterizations of the power graph. Also, we characterize certain classes of power graphs of finite abelian groups.
ISSN:1726-3255