Labelling matrices and index matrices of a graph structure

The concept of graph structure was introduced by E. Sampathkumar in 'Generalised Graph Structures', Bull. Kerala Math. Assoc., Vol 3, No.2, Dec 2006, 65-123. Based on the works of Brouwer, Doob and Stewart, R.H. Jeurissen has ('The Incidence Matrix and Labelings of a Graph', J....

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2013
Main Authors: Dinesh, T., Ramakrishnan, T.V.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2013
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/152307
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Labelling matrices and index matrices of a graph structure / T. Dinesh, T. V. Ramakrishnan // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 42–60. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152307
record_format dspace
spelling Dinesh, T.
Ramakrishnan, T.V.
2019-06-09T17:13:28Z
2019-06-09T17:13:28Z
2013
Labelling matrices and index matrices of a graph structure / T. Dinesh, T. V. Ramakrishnan // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 42–60. — Бібліогр.: 12 назв. — англ.
1726-3255
2010 MSC:05C07,05C78.
https://nasplib.isofts.kiev.ua/handle/123456789/152307
The concept of graph structure was introduced by E. Sampathkumar in 'Generalised Graph Structures', Bull. Kerala Math. Assoc., Vol 3, No.2, Dec 2006, 65-123. Based on the works of Brouwer, Doob and Stewart, R.H. Jeurissen has ('The Incidence Matrix and Labelings of a Graph', J. Combin. Theory, Ser. B30 (1981), 290-301) proved that the collection of all admissible index vectors and the collection of all labellings for 0 form free F-modules (F is a commutative ring). We have obtained similar results on graph structures in a previous paper. In the present paper, we introduce labelling matrices and index matrices of graph structures and prove that the collection of all admissible index matrices and the collection of all labelling matrices for 0 form free F-modules. We also find their ranks in various cases of bipartition and char F (equal to 2 and not equal to 2).
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Labelling matrices and index matrices of a graph structure
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Labelling matrices and index matrices of a graph structure
spellingShingle Labelling matrices and index matrices of a graph structure
Dinesh, T.
Ramakrishnan, T.V.
title_short Labelling matrices and index matrices of a graph structure
title_full Labelling matrices and index matrices of a graph structure
title_fullStr Labelling matrices and index matrices of a graph structure
title_full_unstemmed Labelling matrices and index matrices of a graph structure
title_sort labelling matrices and index matrices of a graph structure
author Dinesh, T.
Ramakrishnan, T.V.
author_facet Dinesh, T.
Ramakrishnan, T.V.
publishDate 2013
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description The concept of graph structure was introduced by E. Sampathkumar in 'Generalised Graph Structures', Bull. Kerala Math. Assoc., Vol 3, No.2, Dec 2006, 65-123. Based on the works of Brouwer, Doob and Stewart, R.H. Jeurissen has ('The Incidence Matrix and Labelings of a Graph', J. Combin. Theory, Ser. B30 (1981), 290-301) proved that the collection of all admissible index vectors and the collection of all labellings for 0 form free F-modules (F is a commutative ring). We have obtained similar results on graph structures in a previous paper. In the present paper, we introduce labelling matrices and index matrices of graph structures and prove that the collection of all admissible index matrices and the collection of all labelling matrices for 0 form free F-modules. We also find their ranks in various cases of bipartition and char F (equal to 2 and not equal to 2).
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152307
citation_txt Labelling matrices and index matrices of a graph structure / T. Dinesh, T. V. Ramakrishnan // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 42–60. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT dinesht labellingmatricesandindexmatricesofagraphstructure
AT ramakrishnantv labellingmatricesandindexmatricesofagraphstructure
first_indexed 2025-12-01T20:42:24Z
last_indexed 2025-12-01T20:42:24Z
_version_ 1850860920873418752